
r

TRS-80'8 ' MODEL I/ill

General Information,
Compiler Use, Start-Up,
Sample Programs, and
Sample Session

TRS-BD

TM

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK~ A DIVISION OF TANDY CORP.

TRS-80 Mod2l I/III

COBOL USER'S GUIDE

(RS/COBOL 1. 3 >

December, 1980

PREFACE

This document contains the information required to compile, run
and debug COBOL language programs on the Radio Shack TRS-80 Model
I/III Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-80 Model I or Model III
Microcomputer, and the TRSDOS Operating System. The reader is
specifically referred to the following publications:

TRS-80 Model I/III COBOL Language Manual
TRS-80 Model I Operation Manual
TRS-80 Model I Disk Operating System Reference Manual
TRS-80 Model III Disk Operating System Reference Manual

This guide is organized such that each cbapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
COBOL system.

PROPRIETARY RIGHTS NOTICE

TRS-80 Model I/III COBOL (RSCOBOL> is a proprietary product of:

licensed to:

Ryan-McFarland Corporation
Software Products Group

Tandy Corporation
One Tandy Center

Fort Worth, Texas 76102
(817) 390-3583

The software described in this document is furnished to the user
under a license for use on a single computer system and may be
copied (with inclusion of the copyright notice) only in accordance
with the terms of such license.

Copyright 1980 by Ryan-McFarland Corporation. All rights
reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Tandy
Corporation.

- i

TABLE OF CONTENTS

Section

CHAPTER 1 THE COBOL COMPILER
1. 1 Compiler Overview
1. 2 Devic:e Assignments
1. 3 Executing the Compiler

1.3.1 Compiler Source lnput
1. 3. 2 Compiler Options
1.3.3 Compiler Messages
1.3.4 Examples

1. 4 The Program Listing
1. 4. 1 Listing Diagnostics
1, 4. 2 Diagnostic Messages ;

THE COBOL RUNTIME
Runtime Overview

CHAPTER 2
2. 1
2.2
2.3

Device Assignments
Executing the Compiled Program

2. 3. 1 · Runtime Options
2. 3. 2 Runtime Messages
2. 3. 3 Examples

""" A " .. --.&..~-- 'l"'\.: _____ .L,:, __
••-,. .,.,_,.,.t.,- .. •••ct ,_,A-Cl!:flf\,l:lt.,.&.\.,::t ••••• • • • • •• • .. • • • • • • • .. • • • • • • • • • • • • •

2. 5 File System Considerations
2. 5. 1 COBOL Sectuential Files
2. 5. 2 COBOL Relative Files
2. 5. 3 COBOL Indexed Files
2. 5. 4 COBOL Label Processing

2. 6 Runtime Memory Usage•........................

INTERACTIVE DEBUG
Debug Overview

CHAPTER 3
3. 1
3.2
3.3

User Interaction and Display
Debug Commands ,

CHAPTER
4. 1
4.2
4. 3
4. 4

4 SYSTEM CONSIDERATIONS
The ACCEPT and DISPLAY Statements
The CALL Sta~ement ·
The COPY Statement
The WRITE ... ADVANCING ZERO ... Statement

CHAPTER 5 INSTALLATION PROCEDURES

APPENDIX A SAMPLE PROGRAMS , ..

APPENDIX B SAMPLE SESSION

APPENDIX C CONVERTING RSCOBOL TO MODEL III

Page

1
1
1
2
3
3
5
7
8
8
9

15
15
15
16
17·
17
18
iO ... ,
23
23
24
24
25
25

26
26
26
26

28
28
29
30
31

32.

33

34

35

MODEL I/III COBOL User 1 s Guide - ii - (RSCOBOL 1.3>

l

CHAPTER 1

THE COBOL COMPILER

1. 1 Compiler Overview

The COBOL Compiler
III Microcomputer
appropriate TRSDOS
Model III - version

operates on a 48K byte TRS-80 Model I or Model
with at least two disk drives under the

Operating System. (Model I - version 2.3,
1. 1).

Once executed, the Compiler makes a single
program, generating obJect and listing files
completion it reports compilation results
returns control to TRSDOS.

pass on the source
concurrently. Upon
on the display and

Compilation always proceeds to the end of the program, regardless
of the number or source errors found.

A listing of the
source statements,

program is generated showing the original COBOL
error information, data allocation, Interactive

D;::;.;i; i,,:'u,'11,ciitlu11 <:1110, optionaliy, a Cross t<ererence of all
program labels and data items. This listing can be directed to
the Console, the Printer and/or a disk file.

The generated obJect file is in a form ready for immediate
execution by the COBOL Runtime. ObJect code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

1. 2 Device Assignments

All communication between the Compiler and the User is through the
system console.

During operation, the Compiler will re4uire one or more of the
following devices:

Display & Keyboard compiler command input & compiler messages

Disk

Disk

Disk

Disk

Display

Printer

source input file

listing file (optional)

obJect file (optional)

COPY input file (optional)

listing display (optional)

listing print (optional)

MODEL I/III COBOL User's Guide - 1 - (RSCOBOL 1.3)

1. 3 Executing the Compiler

To compile a COBOL source program, issue the following command to .)
TRSDOS: .

RSCOBOL filespec (options) comment

where:

filespec

options

is the file specification of the COBOL source file to be
compiled; of the form:

filename/ext. password:d

'filename' is re~uired.

'/ext' is an optional name-extension.
default '/CBL' is used.

When omitted, the

'. password' is an optional password. Note: If the file
was created with a nonblank password, '.password'
becomes a required field.

': d' is an optional drive specification. When omitted,
the system does an automatic search, starting with drive
0.

allows the user to specify compiler and/or file options.
Each option must be specified as shown below, separated
by spaces. The left and right parenthesis are required
if any comments are present.

When no options are
automatically generate
output.

specified, the
an obJect file

compiler will
but no listing

MODEL I/III COBOL User's Guide - 2 - (RSCOBOL 1. 3)

, 1. 3. 1 Compiler Source Input

The Compiler expects the source input to
containing logical records of ASCII text.
can be either or two forms; 'byte-stream' or

be a sequential file,
These logical records
'fixed':

'byte-stream' records consist of a string of ASCII
characters, terminated by a carriage-return character. This
format is typically stored on the disk as one byte records
(LRL=1), and is the format created by the standard TRSDOS
editor(s>.

'fixed' records consist of 80 ASCII characters each <LRL=80),
and do not contain carriage-return or other special
characters.

1. 3.2 Compiler Options

D

E

'D' instructs the compiler to compile all COBOL "Debug"
source lines, identified by a 11 D" in column 7, This
allows the user selective compilation of COBOL source
statements.

This option has no relationship to the COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.

The default is to treat such lines as comments.

'E' instructs the compiler to generate an 'Error Only'
listing instead of a full listing. This option is
effective only when a listing has been specified (L, P
and/or T options).

The listing
i nfo-rmati on,
appropriate
in.Por-mation.

generated will contain 'the page heading
all source lines in error with their

undermarks and messages, plus all summary

The default is not to generate an error listing.

MODEL I/III COBOL User 1 s Guide - 3 - <RSCOBOL 1. 3)

L L=d

0 O=d O=N

p

T

X

'L' indicates that the compiler listing is to be written
to a disk file with the name of the source file and a
filename-extension of '/LST'. The first available disk)
is used.

Speiifying a drive number CL=d> indicates that the
listing file is to be written to disk 'd'.

LST files may be displayed using the standard TRSDOS
LIST and PRINT utilities.

The default is not to generate~ listing file.

'0' indictes that the Compiler obJect output is to be
written to a disk file with the name of the source file
and a filename-extension of '/COB'. The first available
disk is used.

Specifying a drive number <O=d> indicates that the
obJect file is to be written to disk 'd'. When omi+.ted
the first available disk is used.

'O=N' indicates that no obJect file is to be generated.

The default is to generate an obJect file on the first
available disk.

'P' indicates that the listing is to be printed on the
printer.

The aefauit 1s ~ot to print the listing.

'T' indic~tes the listing is to be displayed on the
sustem display.

The default is not to display the listing.

'X' indicates a cross-reference of COBOL Procedure and
Data Division names is to be produced. This option is
effective only when a listing has been specified <L, P
or T options>.

The default is not to generate a cross-reference.

)

_)
MODEL I/III COBOL User's Ouide - 4 - <RSCOBOL 1.3)

1. 3.3 Compiler Messages

Messages which report the compiler's status, or its ability to
complete the compilation process are reported on the system
display as they are detected.

TRS-80 Model I/III COBOL Compiler <RM/COBOL ver v.r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the compiler has been loaded and has begun to
compile the specified program. 'ver v. r' identifies the
version (v> and revision (r) level of the compiler.

COMPILATION COMPLETE: eeee ERRORS, wwww WARNINGS

Indicates that the compilation has been completed. The
values of 1 eeee' and 1 wwww 1 indicate the number or errors and
warnings, respectively, identified in the source program.
This message is repeated on the listing.

PARAMETER ERROR AT: vvvvvvvv

Indicates that an unrecoverable
command to execute the compiler.
the offending field.

error was detected on the
'vvvvvvvv' will identify

The user should reenter the command with the necessary
corrections.

Compiler cancelled by user with BREAK key.

MODEL I/III COBOL User's Guide - 5 - C RSCOBOL 1. 3)

COMPILER ERROR, NO: nnnn

An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition
which caused the •rror.)

0001 Pointer overflow
The user program has exceeded internal compiler
pointers. Segment the program and recompile. If this
problem still exists, separate programs into main
program with multiple subroutines.

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile.

0010 Unable to locate or load a compiler overlay.
Install the RSCBLnvr program overlays as desc~ibed in
the chapter on 'Installation Procedures.'

0020 Invalid TRSDOS
Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Required TRSDOS versions are:

Model I 2.3
Model III 1. 1

0030 Invalid Source Record)
The Compiler has encountered an invalid source input
record. Verify records are ASCII text, formatted as
either:

v} ~u,ia~!; lc11;th rv~wtcli {L~L=!} t~1mi11atad with a
carriage return, orJ

b) Fixed length 80 character records <LRL=80) without
carriage return.

MODEL I/III COBOL User's Ouide - 6 - CRSCOBOL 1.3)

)

1. 3. 4 Examples

RSCOBOL PAYROLL <PX)

locates and compiles the source program PAYROLL/CBL,
producing an obJect rile <PAYROLL/COB) on the rirst available
disk and a listing, with cross-reference, on the printer.

RSCOBOL MORTGAGE/SRC: 1 (L=2 O=N>

compiles the source program MORTGAGE/SRC located on the disk
in drive 1, producing a listing rile (MORTGAGE/LST) on the
disk in drive 2, and no obJect rile.

MODEL I/III COBOL User's Guide - 7 - <RSCOBOL 1.3)

1.4 The Program Listing

The compiler
listings if
options).
listing is

outputs 'source', 'allocation', and 'summary'
a listing device or file is specified (L, P or T

When the 'X' option is specified., a 'cross-reference'
also produced.

The source listing includes a sequential line number, sentence
address, source image, and interspersed diagnostics.

The allocation listing includes the address, size, order, type,
and name of each identifier. The identifier names are indented to
show the record structure. (The order of an identifier is the
number of subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross-reference listing includes all identifier names in
alphabetical order, and the line number oP each declaration,
source, and destination reference. The line number is surrounded
by slashes if the reference is a declaration; asteriks if the
reference is a possible modification. References to all
paragraphs and sections are included.

In all listings, numbers in decimal are represented as ddd ... d,
numbers in hexadecimal are represented as >dd ... d.

1. 4. 1 Listing Diagnostics

S=~~== :t~t~~~nti ~J~ ~hec~eci for syntax and semantic errors as
they are scanned. Errors may cause interruption in scanning. In
this case, text is ignored until a recovery point is found and a
resume message is printed. Recovery points are chosen to minimize
the amount of unanalyzed text without producing irrelevant error
messages. In any case, the constructs at fault are undermarked
and error messages listed when the source line is printed. The
error message includes either E's or W;s indicating error or
warning. For example:

004030 02 STOCK PIC 9(16>PPP COMPUTATIONAL.
$

***** !)PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

Indicates a semantic number size error but

005040 02 PART PIC X(4BX(5) SYNC.
$ $

***** 1)SYNTAX *E
***** 2)SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

MODEL !/III COBOL User's Guide - 8 - (RSCOBOL 1. 3)

indicates a synta~ error at the first undermark and a recover at
the second undermark.

fhe number preceding the error message is the undermark number,
counting from lert to right. More than one message may refer to
the same undermark.

Global errors such as
control transfers are
of the source listing.

undefined paragraph names
listed with the program summary

and illegal
at the end

1.4.2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential rile.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item ..

The referenced identifier is not valid in a class
condition.

COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPOND I NO
The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW

DATA TYPE

The data area (working-storage and literals) is larger
than 65535 bytes in length.

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

MODEL I/III COBOL User's Guide 9 - CRSCOBOL 1.3)

DUPLICATE
Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD).

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as referenced in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a record
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR

FILE TYPE

1ne referenced file-name
incorrectly qualified,
WORKING-STORAGE SECTION,
alphanumeric item.

Access or organization
undermarked statement.

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A non-elementary FILLER item is· declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH
Warning Only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY>
clause.

MODEL I/III COBOL User's Guide - 10 - (RSCOBOL 1. 3)

IDENTIFIER
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement
~ualified paragraph
of segmentation.

reference undefined or incorrectly
or the reference violat~s the rules

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other att~ibutes.

KEY REQUIRED

LABEL

LEVEL

LINKAGE

R~l~tiv~ ~~~ ~=t ~==l~r:d ~=7 ~~~~=m ~~~~ii T~lati~~
file or record key not declared ror indexed file.

Presence or absence of label record conflicts with
device standards.

Level-number given is invalid either intrinsically or
because or position within a group.

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MODEL I/III COBOL User's Guide - 11 - (RSCOBOL 1. 3)

MUST BE SECTION

NESTING

Context requires procedure-name to be section.

Illegal nesting of
cond i tian.

condition that is not an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced obJect of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

)

PICTURE-USAGE CLASH)
USAGE claus~ or implied usage conflicts with usage ~
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW

RECORD KEV

The instruction area is larger than 32767 bytes in
length.

Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost bvte.

RECORD REGUIRED

REDEFINES

Context requires record name.

REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL I/III COBOL User's Guide - 12 - <RSCOBOL 1.3)

_)

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number cl character positions and is
not l eve 1 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands oF relation test are incompatible.

RELATIVE KEY
Relative key declared ror other than a relative
organization file or a START statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word o·r symbol is given where a user
word is required. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SIZE

SIZE ERROR

SUBSCRIPT

A VALUE IS clause appears in the FILE or LINKAGE
section.

Warning
segment
number
segment

on 1 y. Segment numb er
is not the same as the
of a new independent
numb er is used.

given in an independent
current segment or the
segment. The current

Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN clause given in conflict with usage and picture.

Warning only.
context.

Declared
ref er enc e.

size

Size of data referenced not correct f-or

of record conflicts with present

Incorrect
reference.

number of subscripts or indices for a

MODEL I/III COBOL User's Guide - 13 - <RSCOBOL 1. 3)

SYNC
Synchronized clause given Pora group item

SYNTAX
Incorrect character or ~eserved word given for context.

UNDEFINED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
~ualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a
CALL ~\tc:1itt:nu=11t i=-- Urt"fcTc:irt f-;--wm
reference to the same program name.

VALUE ERROR

VALUE

Value given in VALUE IS required truncation of nonzero
digits.

VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with
variable size records.

MODEL !/III COBOL User's Guide - 14 - (RSCOBOL 1. 3)

l

CHAPTER 2

THE COBOL RUNTIME

2. 1 Runtime Overview

The COBOL runtime operates on a 48K byte
III Microcomputer with at least two
appropriate TRSDOS Operating System.
Model III - version 1. 1).

TRS-80 Model I or Model
disk drives under the
(Model I - version 2.3,

Once invoked, the runtime loads and executes the compiled obJect
program, automatically loading any required segments.
Concurrently, it allocates memory for file buffers, and CALLed
COBOL and Assembly Language subprograms. Upon completion
appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments

All communication between Runtime and the User is through the
keyboard and display.

During operation the Runtime will re~uire one or more of the
following devices:

Keyboard & Display runtime command input, Interactive Debug
command input, and runtime messages.

Keyboard & Display ACCEPT and DISPLAY, and Interactive Debug
display.

Printer PRINT output, if required.

NOTE: For PRINT output, the device name
"PRINTER" must be specified in the
SELECT statement; i. e,

SELECT filename, ASSIGN to PRINT, "PRINTER".

MODEL I/III COBOL User's Guide - 15 - (RSCOBOL 1.3)

2.3 Exec~ting the Compiled Program

To execute a compiled COBOL obJect p-rogram, issue the following]
command to TRSDOS:

filespec

options

RUNCOBOL filespec (options) comment

is the specification of the compiled COBOL obJect file
to be executed of the form:

filename/ext.password:d

'filename' is required.

'/ext' is an option~l name-extension.
default '/COB' is used.

When omitted the

'. password' is an optional password. Note: If the file
was created with a nonb lank !)asswo-rd. '. ~as!lwo-rd'
becomes a required field.

': d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

allows the user to specify runtime options. Each option
must be specified as shown below, separated by spaces.
The left and right parenthesis are required if any
comments are present.

When no options are specified, the runtime will execute
the User's program without Interactive Debug, with all
switches set to 0, u~ing all of available memory.

MODEL I/III COBOL User's Guide - 16 - <RSCOBOL 1.3)

.J

2.3. 1 Runtime Options

.D
'D' invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive . Debug discussion, below, .Por
operating instructions.

The default is not to invoke Interactive Debug.

S•nn .. n

T=hhhh

'S' sets (or resets> the value of SWITCHES in the COBOL
program.

Each 'n' is a switch value, 0
numbered 1 to s~ left to right.
not be specified.

for a.Pf. 1 for on,
Trailing zeroes need

The default is to set all switches o.Pf <O>.

'I' sets tne top of available memory to a value
di.Pferent .Prom the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal
address 'hhhh'.

The default is to use all available memory.

2.3.2 Runtime Messages

Messages which report the runtime's status,
execute the COBOL program, are reported on the
they are detected.

or its ability to
system display as

TRS-80 Model I/III COBOL Runtime <RM/COBOL ver v.r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the runtime has been loaded and has begun to
execute the specified program. 'ver v.r' identifies the
version (v) and revision (r) level of the runtime.

MODEL I/III COBOL User's Guide - 17 - <RSCOBOL 1. 3)

COBOL STOP RUN AT xxyyyy IN nnnnnn

This is the normal termination message of a program.

'xxyyyy' identifies the overlay Cxx)
(yyyy) where the program terminated.
six characters of the PROGRAM-ID.

If Debug was invoked on the command
command may be used to cause Debug to
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE (YIN>?

and statement address
'nnnnnn' are the first

1 ine, an 'S' Debug
exit to the operatin~

This message indicates that a STOP 'literal·, statement has
been encountered. 'xxyyyy' identifies the overlay (xx> and
statement address (yyyy> where the program terminated.
'nnnnnn' are the first six characters of the PROGRAM-ID.

Responding with a 'Y' will be the e~uivalent of a "pause"
...,_ .a..L. - - - .. ~ rnnnt _ _.,. ____ .._
VV ... 115 ft .. ,.V,,_,.,,_,..,_ .,,,.V W'l;.IU1-11Wa-

An 'N' response will cause all program fil~s to be closed and
control will be returned to the operating system.

2.3.3 Examples '

RUNCOBOL PAYROLL <6=1011)

locates, loads, and executes the compiled
PAYROLL/COB; and sets the value of SWITCHES 1,
all others 'off'.

RUNCOBOL MORTGAGE/TST:2 <D>

COBOL program
3, and 4 'on',

loads~the compiled COBOL program MO~TGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed
directly to Debug.

RUNTIME ERROR, NO: nnnn

an internal error has
execution. The value
which caused the error.

occurred which prevents continued
of 'nnnn' identifies the condition

0010 Unable to locate or load User Debug.
Install RSCBLDvr as described in the chapter on
'Installation Procedures'.

MODEL I/III COBOL User's Guide - 18 - <RSCOBOL 1.3>

1

J

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input~output error, such as data check
parity error, or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime (REWRITE to a variable length record <VLR)
9ile; CLOSE REEL). May also indicate that no more space
is available on the disk.

34 PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

90 INVALID OPERATION.
An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement.

91 FILE NOT OPENED.
An attempt has been made to execute a DELETE, READ,
START, UNLOCK, WRITE, REWRITE or CLOSE statement on a
file which is not currently open.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file wnich is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
been made to execute a CLOSE
execute an OPEN statement for a
to a device in conflict with
device. Valid combinations are:

An attempt has
statement, or to
which is assigned
externally assigned

Program Assignment

RANDOM

INPUT

OUTPUT

External Assignment

Disk

Disk

Disk

REEL
file
the

PRINT

INPUT-OUTPUT

Disk, line printer

Disk

MODEL I/III COBOL User's Guide - 20 - <RSCOBOL 1. 3)

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence ~f an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
when the new record length i~ different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that sp•cifies a record with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:

10 AT END.
The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

21 ~~UUeN~~ ~RRUR FUR A SEGUENTlALLY ACCESSED INDEXED FILE.

22

The ascending se~uence re~uirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

DUPLICATE KEY VALUE.
An attempt has been
create a duplicate
duplicates.

made to WRITE
key on a file

a record that would
that does not allow

23 NO RECORD FOUND.
An attempt has been made to access a record, identified
by a key, and that record does not exist in the file.

24 BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check,
parity error, or transmission error. May also indicate
that no more space is available on the disk.

90 INVALID OPERATION.
An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
read statement.

MODEL I/III COBOL User's Guide - 21 - <RSCOBOL 1.3)

91 .FILE NOT OPENED.
An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START,· UNLOCK, or WRITE statement on a
file which is not in an open mode.]

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

96 UNDEFINED CURRENT RECORD POINTER.
An attempt
statement
undefined
preceding

has been made to execute a Format 1 READ
when the current record pointer has an

state. This can occur only as the result of a
unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

98 INVALID INDEX.
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

MODEL I/IiI COBOL User's Guide - 22 - <RSCOBOL 1. 3>

2.5 File System Considerations

Three types of files are supported by the COBOL Runtime:
sequential, relative (random), and indexed seq_uential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not typically need file information to execute COBOL
programs, he is referred to the Technical Information Section of
the Disk Operating System Reference Manual if further information
is desired.

Files are specified in the user's program SELECT statement
according to rules for the TRSDOS filesp~c, of the form:

where:

filename/ext. password:d

'filename' is required.

'/ext' is an optional name-extension.

'. password' is an optional password. Note: If the file
was created with a nonoian~ pd~~worJ,
becomes a required field.

':d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

2. 5. 1 COBOL Sequential Files

COBOL sequential files consist of a serially accessible set of
'logical' records. These 'logical' records can exist on the disk
in either of two forms; 'variable' or 'fixed'.

'variable' records are identified in the File Description Entry
<FD> by specifying "RECORD CONTAINS n TO m CHARACTERS". 'fixed'
records are identified by specifying RECORD CONTAINS n
CHARACTERS". The user is cautioned to maintain a consistent
specification among all programs referring to the same file.

'variable' records contain a one byte length field at the
beginning of each record, followed by the actual data bytes. The
record length can vary rrom record to record. The second length
byte indicates the entire length of the record, including the
length byte. This can be any value 4!rom 2 to 255. This format is
stored on the disk as one byte records (LRL=1).

'fixed' records are all of the same length and do not contain a
length byte. These files exist on the disk as standard TRSDOS
fixed length records of length <LRL=i 1 to 255 characters.

MODEL I/III COBOL User's Guide - 23 - CRSCOBOL 1.3>

2. 5.2 COBOL Relative Files

COBOL relative files are addressable randomly by 'logical' record
number. These files exist on the disk as fixed length records.

COBOL relative file 'logical' records are internally formatted,
and can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 253 bytes.

COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2.5.3 COBOL Indexed Files

COBOL indexed files are created and maintained by the COBOL
runtime; implemented on the disk using TRSDOS fixed length records
~; 256 L v tei:t.

COBOL indexed files are internally formatted, and can be created
and/or accessed only by COBOL programs. Each 'logical' record can
have a maximum length of 4096 bytes.

Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file; however, access time will be relativellJ constant throughout
the file.

COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:

NRECS = Int ((S + 33)/32) * R / 8

+ (R * 2> / Int (252/(Kn+S)>

+ <R * D> / 8

for each key

if duplicates

where:

R = maximum number of records desired
S = size of records (in bytes>
Kn= size of Kn (in bytes)
D = number of keys that allow duplicates

MODEL I/III COBOL User's Guide - 24 - <RSCOBOL 1.3)

l

2. 5.4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices.

TRSDOS provides automatic maintenance and validation of
specifications by name and file type. No additional
processing is performed uni~ue to COBOL programs or Files.

file
Label

References to Label processing in the file description entry <FD>,
OPEN statement, and CLOSE statement, are checked For correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned, and any
applicable USE procedures will be executed.

2.6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory From location
OOOOH to 05200H. The COBOL Runtime is loaded starting at 05200H.
The remaining memory is allocated as Follows:

The main COBOL obJect program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays <SECTIONS
greater than 50) are included in this area.

Additional COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).

Assembly Language
address they were
'T=hhhh' option).

programs are loaded in high memory at the
assigned at 'DUMP' time (See Runtime

File buffers are dynamically allocated From high memory
downward, when OPENed, d~allocated (space recovered for use
by other files> when CLOSEd.

MODEL I/III COBOL User 1 s Guide - 25 - (RSCOBOL 1.3>

3. 1 Debug Overview

CHAPTER 3

INTERACTIVE DEBUG

COBOL Interactive Debug is dynamically loaded when the user
speci9ies the 'D' option on the RUNCOBOL statement. Debug is then
given control and supervises the execution o9 the user's program.

Interactive Debug is loaded directly behind COBOL Runtime,
re~uiring approximately 1000 bytes.

3.2 User Interaction and Display

All Debug commands, and all resultant displays, are through the
system console.

Debug will request command input by a prompt of the 9orm

nnnnnn xxyyyy

where 'nnnnnn' are the 9irst 6 characters o9 PROGRAM-ID, 'xx' is
the overlay number, and 'yyyy' is the hexadecimal location within
the speci9ied overlay that will be executed next.

The values o9 'xx' and 'yyyy' are taken directly 9rom the Debug
column in the source listing -for program 'nnnnnn'.

3.3 Debug Commands

All commands are specified by a single character, optionally
-followed by one or more arguments. Optional fields are shown
surrounded by brae k ets; the brae k ets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted.

Invalid commands will be reJected with 'ERROR' displayed;
corrected input will be requested with a reprompt.

AtxxJyyyyC,nnnnnnJ Address stop.

Executes obJect instructions until overlay number 'xx' and
location 'yyyy' in program nnnnnn is to be executed. Debug
will regain control immediately prior to the execution or the
specified COBOL sentence, and request further command input.

MODEL I/III COBOL User's Guide - 26 - (RSCOBOL 1. 3)

l

SCnJ

If 'xx' is specified, 'yyyy' must be fully four hexadecimal
digits; if 'xx' is not specified, then leading zeros are not
required for '\JYYY '. If 'nnnnnn' is omitted, it· is assumed
to be the first six characters of the program-id or the
currently executing program.

Single step sentence.

Execute 'n' COBOL sentences and return to the debug monitor.

The decimal argument 'n' specifies the number of COBOL
sentences to be executed before returning the Debug.

Dxxxx,yyyyC,ttttJ Dump by type.

G

E

Display the COBOL data item starting at hexadecimal location
'xxxx' of decimal length 'yyyy' and type ;tttt'. The values
for 'xxxx '• 'yyyy '• and 'tttt' are directly from the first
three columns of the allocation map. 'tttt' may be one of
the following:

NSU
NSS
NCU
NCS
NBS
NSE

NPS
ABS
ANS
GRP
ANSE
HEX (hexadecimal)

Dump Display has the format:

xxxx tttt dddd

where dddd = data in the specified format

Note: Only
displayed.

items in the currently executing program can be
This does not include linkage items.

Quit Execution.

Terminate Debug and force an immediate STOP RUN.
to return to TRSDOS.

Exit

Enter 'S'

Exit the Debugger. Continue normal execution as if- the
debugger had not been invoked on the command line.

MODEL I/III COBOL User's Guide - 27 - <RSCO:SOL 1. 3)

CHAPTER 4

SYSTEM CONSIDERATIONS

4. 1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transFer of data
between the keyboard and display and the User's program data area.
These statements allow the specification of general phrases which
may not be supported on every CRT.

Phrases which are not supported will compile correctly, but will
be ignored at runtime, causing no operation to take place. The
phrases which are not supported are:

ACCEPT HIGH, LOW, BLINK.

DISPLAY HIGH, LOW, BLINK, BEEP.

The ON EXCEPTION phrase of the ACCEPT statement is executed when .. , ;. ,-·•-'I'.!. J -L. _,_ - _.,a.. __
.&.UVa.a...1,u 1-HCIJ ,g.._ "''-'

valid control characters (CNTR/n) below 020H,
characters above and including 080H.

and non-ASCII

When an invalid character is entered, its ASCI equivalent is
placed in the specified data-name and the ON EXCEPTION phrase is
executed. To determine which control character was entered,
define the data-name as USAGE COMPUTATIONAL-1 and compare for its
ASCII value.

Certain keijs affect
including:

the operation of the ACCEPT statement,

<-

CLEAR

Erases the current character and moves the
cursor back one position.

Backspace to the beginning of the field,
erasing all characters in the field.

MODEL I/III COBOL User's Guide - 28 - (RSCOBOL L 3>

4.2 The CALL Statement

When 'CALLed' the first time, COBOL and Assembly Language programs
· are loaded by Runtime and entered at their initial location.
These 'called' programs remain in memor~ as long as the 'calling'
program is active; i.e., has not EXITed. Therefore, subsequent
CALLs from the 'calling' program will enter the 'called' program
directly, without requiring the 'called' program to be reloaded.

Once the 'calling' program has EXITed, all related 'called'
programs are discarded and 1a1ill be reloaded if subsequently CALLed
by any program, including the previous 'calling' program.
Regardless of the sequence of 'called' and 'calling' programs, all
related files not explicitly closed are forced closed by the
interface upon EXIT from a given 'called' program.

COBOL programs· that are to be CALLed must have been previously
compiled. The default filename-extension for a program name in a
CALL statement is '/COB'. A compiled COBOL program will have the
req,uired extension. If the extension used is not '/COB' , then it
must· be specified in the CALL statement.

Assemoiy language programs that are to be CALLed must be in TRSDOS
LOAD command format as created by DUMP, with a Filename extension
other than '/COB'. Assembly language programs must reside in high
memory, and the 'T=nnnn' option must be specified on the Runtime
command line to protect all memory required by the routine. The
user is responsible ror ensuring that the assembler programs do
not interfere with each other.

and reused while the
If the COBOL 'calling'

the assembler program will

Assembly language programs are loaded
'calling' program resides in memory.
program is reloaded in memory, then
again be reloaded when it is called.

At entry time to an assembly-language routine register IX points
to the parameter list defined by the USING clause of the CALL
statement. The first word on the list contains the number or
bytes in the list. Subsequent words are addresses or the USING
arguments: e.g., if the length word specifies 6 bytes, there are 2
addresses following the length word. For example:

(IX)=> DW
DW
ow

Argument List Length <n * 2 + 2)
USING Argument 1
USING Argument 2

DW USING Argument n

The format
definition;

of each argument depends on its dataname PICTURE
see the COBOL Language Manual, 'the PICTURE Clause'.

At exit time from an assembler routine, · register A may be set
non-zero to request a STOP RUN.

MODEL I/III COBOL User's Guide - 29 - (RSCOB0L 1.3)

4.3 The COPY Statement

Th• COPY statement provides the 9acility to capv (include) COBOL)
source text 9rom a user-specified file into the source program.
The complete file is copied into the program,· without change, at
the location of the COPY statement.

The file to be copied is identified in the COBOL program by the
statement

COPY filename

or

COPY 11 filename/ext. password:d"

where:

'filename' is required.

'/ext' is an optional name-extension. When omitted the
default '/CBL: is used.

'.password' is an optional password. Note: If the file
was created with a nonblank password, '. password'
becomes a required field.

':d' is an optional drive speci9ication. When omitted
the svstem does an automatic search, starting with drive
0.

A filename consisting only of letters and numbers (first character
must be letter> can be written without surrounding quotes. All
~ther forms must be surrounded by quotes.

Examples:

IDENTIFICATION DIVISION.
COPY STD ID.

ENVIRONMENT DIVISION.
COPY "STDENVIR/TST".

DATA DIVISION.
COPY "STDDATA/CBL: 1 11 •

MODEL I/III COBOL User's Guide - 30 - <RSCOBOL 1. 3)

4.4 The WRITE ... ADVANCING ZERO ... Statement

The seq,uential
positioning of
phrase.

WRITE statement allows control of the vertical
each line on the printed page with the ADVANCING

·The . . . ADVANCING ZERO LINE<s> . . . phrase allows overprinting .. on
those print devices which support this feature. In all cases, the
phrase will compile correctl~, but mav operate as though
... ADVANCING 1 LINE ... was specified.

Standard Radio Shack Line Printers automatically advance after
each line is printed. Therefore, the ... ADVANCING ZERO LINES ...
phrase will execute as ADVANCING 1 LINE. The Compiler and
Runtime defaults to standard Radio Shack Line Printer operation.

MODEL I/III COBOL User's Guide - 31 - <RSCOBOL 1.3)

CHAPTER 5

INSTALLATION PROCEDURES

Installation of RSCOBOL requires only that the obJect modules be
copied from the Development and Runtime factory release diskettes
to the appropriate user diskette. NOTE: 'nn' indicates the
current release level, i.e., release l. 3 will be '13'.

The modules required to compile COBOL programs are:

RSCOBOL
RSCBL2nn/OBJ
RSCBL3nn/OBJ
RSCBL4nn/OBJ

The modules 'required to execute compiled COBOL programs are:

RUNCOBOL
RSCBLDnn/OBJ

As with all Development and Runtime factory release diskettes, the
user should save it in a secure location in case re-creation is
reciuired.

MODEL I/III COBOL User's Guide - 32 - <RSCOBOL 1. 3)

)

APPENDIX A -

SAMPLE PROGRAMS

MODEL I/III COBOL User's Guide - 33 - <RSCOBOL 1.3)

-80 Model I/III COe,OL <RM/COe.OL 1.3A) 10/31/80 00:15:44 PAGE l
RCE FILE: CALCXMPL OPTION LIST: <P,T,0=2,X

l
2
3
rt
)

0
7
3
-:,
?J
1
2
3
4
j

0
7
3 ..
I

2)

1
2
3
4
5
0
7
3
9
2)

1
2
3
4
5
0
7

DEBUG PG/LN A ••• 8 •• • ~ •••

IDENTIFICATION DIVISION.
PROGRAM-ID.

CALCULATOR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. RMC.
OBJECT-COMPUTER. RMC.

DATA DIVISION.
WORKING-STORAGE
77 RESULT

SECTION.

77 OPERAND-!
77 OPERAND-2
77 WAIT-CHAR
01 GREETING.

PICTURE S9(9)V9(9) VALUE ZERO.
PICTURE S9(9)V9(9).
PICTURE S9(9)V9(9).
PICTURE X.

PICTURE X(18) 02 FILLER
VALUE "CALCULATOR PROGRAM• •

02 FILLER PICTURE X(37)
VALUE "CHOOSE YOUR OPERATION<+,-,*,/)=•

01 OPERATOR PICTURE X<2).
01 RESULT-MESSAGE.

02 FILLER PICTURE X(12>
VALUE "RESULT IS="•

02 RESULT-EDITED PICTURE -(9)9.9(9).
02 FILLER PIC X(4) VALUE SPACES.
02 OVERFLOW-FIELD PIC X(B) VALUE SPACES.

. 01 WAIT-MESSAGE.
02 FILLER PICTURE X(36)

VALUE "HIT NEWLINE TO CONTINUE (Q TO QUIT) ".
01 OPERAND-1-MESSAGE.

02 FILLER PICTURE X(12)
VALUE 11 0PERAND-1 = •.

0~ OPERAND-2-MESSAGE.
02 FILLER PICTURE XC12}

VALUE 11 0PERAND-2 = 11

34

l

S-80 Model I/III COBOL <RM/COBOL 1.3A> 10/31/80 00:15:44 PAGE
URCE FILE: CALCXMPL OPTION LIST: CP,T,0=2,X

NE DEBUG PG/LN

..58
39
40 >0000
41)00012)
42)0000
43 >0004
44 >0004
45 >000C
46 >0014
47 >001C
48 >0024
49 >002C
50)003.lt
51 >003C
52 >003E
53 >003E
54)0042
55 >0046
56)00ltA
57 :-.:-0~51ll
58)0050
59 >005.lt
60 >005C
61 >0064
">2 >0066
,3 >0066

64 >006C
65
66 >0078
67 >007C
bB)0084
69)0088
70
71 >0094
72 >0098
73)00A2
74 >00A2
75)00A6
76 >00A6

A ••• e .. .,. " "•. -,•.

/ EJECT
PROCEDURE DIVISION.
RESIDENT SECTION 1.
NOT-·START.

GO TO DISPLAY-GREETING.
RE-TRY.

DISPLAY OPERATION-MESSAGE, LINE 2, ERASE.
ACCEPT OPERATOR, POSITION 0, PROMPT, ECl-K>.
IF OPERATOR EQUAL u+ u GO TO ADDITION.
IF OPERATOR EQUAL "- 0 GO TO SUBTRACTION.
IF OPERATOR EQUAL "*"GOTO MULTIPLICATION.
IF OPERATOR EQUAL "/•GO TO DIVI-SION.
IF OPERATOR EQUAL "Q •GOTO END-RUN.
GO TO RE-TRY.

DISPLAY-RESULT.
MOVE RESULT TO RESULT-EDITED.
DISPLAY RESULT-MESSAGE.
MOVE ZERO TO RESULT.
MOVE SPACES TO OVERFLOW-FIELD.

HA! T-E!'!T~Y.
DISPLAY WAIT-MESSAGE.
ACCEPT WAIT-CHAR, POSITION 0, PROMPT, ECHO.
IF WAIT-CHAR EQUAL "Q" GO TO END-RUN.
GO TO RE-TRY.

GET-OPERANDS.
DISPLAY OPERAND-1-MESSAGE, LINE 4.
ACCEPT OPERAND-1, LINE 4, POSITION 13, SIZE 10,

PROMPT, CONVERT.
MOVE OPERAND-1 TO RESULT-EDITED.
DISPLAY RESULT-EDITED, LINE 4, POSITION 13.
DISPLAY OPERAND-2-MESSAGE.
ACCEPT OPERAND-2, LINE 5, POSJTION 13, SIZE 10,

PROMPT, CONVERT.
MOVE OPERAND-2 TO RESULT-EDITED.
DISPLAY RESULT-EDITED, LINE 5, POSITION 13.

END-RUN.
EXIT PROGRAM.

STOP-RUN.
STOP RUN.

35

~80 Model I/III COBOL (RM/COBOL 1.3A) 10/31/80 00:15:44 PAGE
IRCE FILE: CALCXMPL OPTION LIST: CP,T,0=2,X

IE DEBUG PG/LN

'7

A 8 .. ., •••••• /f< ••••••••••••••••••••.•••••••••••••••••••••••• ·1

'8)0100A8
'9)0100A8
l0>0100A8
11:>0100AA
12
~3 > 0100B8
)4
!5>0200A8
)6>0200A8
~7>0200A8
38)0200AA
~9
~0>0200B8
~1
~2>0300A8
~3)0300A8
~4)0300A8
~5)0300AA
~6
?7)030088
?8
r9>0400A8
,0>0400A8
H>0400A8
,2>0400AA
~3
~4>0400BA ,s
,6>0500A8
~7>0500A8
,s>0500A8
~9>05Q'.10AC
l0
l 1

I EJECT
OVERLAY-ADDITION SECTION 51.
ADDITION.

PERFORM GET-OPERANDS.
ADD OPE-RAND-1 OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-SUBTRACTION SECTION 52.
SUBTRACTION.

PERFORM GET-OPERANDS.
SUBTRACT OPERAND-2 FROM OPERAND-1 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-MULTIPLICATION SECTION 53.
MULTIPLICATION.

PERFORM GET-OPERANDS.
MULTIPLY OPERAND-1 BY OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DIVISION SECTION 54.
DIVI-SION.

PERFORM GET-OPERANDS.
DIVIDE OPERAND-1 BY OPERAND-2 GIVING RESULT ROUNDED

ON SIZE ERROR MOVE uoVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DISPLAY-GREETING SECTION 98.
DISPLAY-GREETING.

DISPLAY GREETING.
GO TO WAIT-ENTRY.

END PROGRAM.

36

I

3-80 Model I/ Il I COBOL (RM/COBOL 1. 3A) 10/31/80 0~H 15: 44 PAGE
i.JRCE FILE: CALCXMPL OPTION LIST: (P,T,0=2,X

ODRESS SIZE DEBUG ORDER TYPE NAME

>0004 19 NSS 0 NUMERIC SIGNED RESULT

~-0018 19 NSS 0 NUMERIC SIGNED OPERAND-1

>002C 19 NSS 0 NUMERIC SIGNED OPERAND~2

>0040 1 ANS 0 ALPHANUMERIC WAIT-CHAR

>0042 18 GRP 0 GROUP GREETING

>0054 37 GRP 0 GROUP OPERATION-MESSAGE

~007A 2 ANS 0 ALPHANUMERIC OPERATOR

•007C 44 GRP 0 GROUP RESULT-MESSAGE
~0088 20 NSE 0 NUMERIC EDITED RESULT-EDITED
>00A0 8 ANS 0 ALPHANUMERIC OVERFLOW-FIELD

·00A8 36 GRP 0 GROUP WAIT-MESSAGE

·00CC 12 GRP 0 GROUP OPERAND-1-MESSAGE

·0008 12 GRP 0 GROUP OPERAND-2-MESSAGE

1D ONLY BYTE SIZE = >01BE

1D/WRITE BYTE SIZE = >00EC

RLAY SEGMENT BYTE SIZE = >002E

AL BYTE SIZE = >02D8

0 ERRORS

0 WARNINGS

37

-80 Model I/Ill COBOL <RM/COBOL 1.3A) 10/31/80 00: 15 :44 PAGE
RCE FILE: CALCXMPL OPTION LIST: <P,T,0=2,X

SS REFERENCE /DECL/ *DEST* ~7
ITION 0046 /0079/
PLAY-GREETING 0042 /0107/
PLAY-RESULT /0052/ 0083 0090 0097 0104
I-SION 0049 /0100/
-RUN 0050 0060 /0073/
-OPERANDS /0062/ 0080 0087 0094 0101
ETING /0016/ 0108
.TI PLICATION 0048 /0093/
-START /0041/
RAND-1 /0013/ *0064* 0066 0081 *0088* 0095 0102
RAND-1-MESSAGE /0032/ 0063
:RAND-2 i0014/ *0069* 0071 0081 0088 *0095* 0102
.RAND-2-MESSAGE /0035/ 0068
:RAT I ON-MESSAGE /0019/ 0044
RATOR /0022/ *0045* 0046 0047 0048 . 0049 00512
:RFLOW-F I ELD /0028/ *0056* *0082* *0089* *0096* *0103*
.RLAY-ADDITIC>N /0078/
:RLAY-DISPLAY-GREETING /0106/
RLAY-DIVISION /0099/
:RLAY-MULTI PLICATION /0092/
RLAY-SUBTRACTION /0085/
,IDENT /0040/
:ULT /0012/ 0053 *0055* *0081* *0088* *0095* *0102
:ULT-ED I TED /0026/ *0053* *0066* 0067 *0071* 0072
:ULT-MESSAGE /0023/ 0054
·TRY /0043/ 0051 0061
•P-RUN /0075/
,TRACTION 0047 /0086/
T-CHAR /0015/ *0059* 0060
T-ENTRY /0057/ 0109
T-MESSAGE /0029/ 0058.

38

-80 Model I/III COBOL (RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE
RCE -FILE: ERRXMPL OPTION LIST: <T,P,0=2,X

E DEBUG PG/LN A • •• B •••••••••••••••••••••••••• •

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
)

6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4

**
**
5
6 ..,
J

000010 IDENTIFICATION DIVISION.
000020
000030 PROGRAM-ID.
000040 ERROR-EXAMPLES.
000050
000060 ENVIRONMENT DIVISION.
000070 CONFIGURATION SECTION.
000080 SOURCE-COMPUTER. RMC-MINI.
000090 OBJECT-COMPUTER. RMC-MINI.
000100 INPUT-OUTPUT SECTION.
000110 FILE-CONTROL.
000120 SELECT INPUT-FILE
000130 ASSIGN TO INPUT, INPUT-NAME;
000140 FILE STATUS IS INPUT-STATUS.
000150 SELECT OUTPUT-FILE
000160 ASSIGN TO OUTPUT, OUTPUT-NAME;
000170 FILE STATUS IS OUTPUT-STATtJS.
000180·
000190 DATA DIVISION.
000200 FILE SECTION.
000210 FD INPUT-FILE
000220 RECORD CONTAINS 80 CHARACTERS
000230 LABEL RECORD IS OMITTED.
000240 01 INPUT-REC.
000250 05 FILLER PIC X(06).
000260 05 INPUT-FLO
000270 05 AREA-FLDS
000280 10 AREA-C

PIC XC66).
REDEFINES INPUT-FLO.
PIC X(01).

000290 10 AREA-A PIC X<04).
000300 10 AREA-B PIC X<61>.
000310 05 FILLER PIC X<0B).
000320 FD OUTPUT-FILE
000330 RECORD CONTAINS 80 CHARACTERS,
000340 LABEL RECORD IS OMITTED.
000350 01 OUTPUT-REC.
000360 05 SEQ-FLD
000370 05 OUTPUT-FLO
000380 05 FILLER

SECTION.

PIC
PIC
PIC

9(06).
X(66).
X(08).

X (28).
X (28>.

000390 WORKING-STORAGE
000400 Tl INPUT-NAME
000410 77 OUTPUT-NAME
000420 77 COUNT

PIC
PIC
PIC
PIC
PIC

· 9(06) VALUE 0.
000L•30 77 LARGE-VALUE
000440 77 PIC-ERROR

X(04) VALUE
*(05) • *9.

$

1) PICTURE *E*
1) SCAN RESUME *W*

000450 77 INPUT·-STATUS PIC X(04} ..
000460 77 OUTPUT-·STATUS PIC X(02).
000470 01 SEQ-VALUE PIC 9(06) •
000480

39

·80 Model I/III COBOL (RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 2
tCE FI~E: ERRXMPL OPTION LIST: CT,P,0=2,X

DEBUG PG/LN A ••• B ••

000490
)0000 000500
)0000 000510

000520
)000A 000530
)0010 000540

) >0014 000550

I
PROCEDURE DIVISION.
0100.

DISPLAY "COBOL PROGRAM SEQUENCER",
LINE 1 POSITION 30 ERASE.

DISPLAY SPACES LINE 2.
DISPLAY "INPUT FILE: •.
MOVE'3.5 TO OUTPUT-STATUS.

$ $

l

~* 1) MOVE *E
~* 2) SCAN RESUME *W*~
')0016 000560 ACCEPT INPUT-NAME POSITION 0 PROMPT ECHO.
3)001E 000570 DISPLAY "OUTPUT FILE: ".
,)0022 000580 ACCEPT OUTPUT-NAME POSITION 0 PROMPT ECHO.
,)002A 000590 OPEN INPUT INPUT-FILE.

1) INVALID ID
2) SCAN RESUME

>002C 000600

$. $

*E
W~

OPEN OUTPUT OUTPUT-FILE.
>)0032 000610 MOVE SPACES TO OUTPUT-REC.

MOVE 0 TO SEQ-VALUE.
DISPLAY "SEQUENCING BEGUN".

I >0036 000620
>003A 000630
)0040 000640

>)0040 000650
0200.

READ INPUT-FILE AT END
$

1) I NVAL ID I D
000660

E:
GO TO 0300.
$

f* 1) SCAN RESUME *W*~
3 >0046 000670 PERFORM INPUT-CHECK.

$

f* 1> MUST BE PROCEDURE *E
r* 1) SCAN RESUME *W*~
~)0048 000680 ADD 10 TO SEQ-VALUE.
) >004E 000690 MOVE SEQ-VALUE TO SE<~-FLD.

>0052 000700 MOVE INPUT-FLO TO OUTPUT-FLD.
)0056 000710 WRITE OUTPUT-REC.
>0062 000720 ADD 1 TO COUNT.
)0068 000730 GO TO 0200.
)006A 000740 0300.

> >006A 000750 DISPLAY COUNT,

'*
'*

000760 • RECORDS SEQUENCED AND COPIED" POSITION 0.
>0074 000770 CLOSE INPUT-FILE, OUTPUT-FILE.

1 > INVALID ID
2) SCAN RESUME

)0076 000780
)0078 000790

$ $

*E
W~

STOP RUN.
GO TO 0150.
$

1) MUST BE PROCEDURE *E
1) SCAN RESUME *W*W*W*W*W*W*W*W~W*W*W*W*W*W*W*W*W*W*.W*W*W*W*W*W*W*W*I

000800 END PROGRAM.

40

;-80 Model I/III COBOL (RM/COBOL 1.JA> 10/31/80 00:22:43 PAGE
JRCE FILE: ERRXMPL OPTION LIST: (T,P,0=2,X

)DRESS SIZE DEBUG ORDER TYPE

·0000
·0006
·0006
·f2HZl06
·0007
·000B

·0050
·0050
·0056

·00A4

·00C0

00DC

00E2

00E6

00EE

00F2

00F4

0
80 GRP
66 ANS
66 GRP

1 ANS
4 ANS

61 ANS

0
80 GRP

6 NSU
66 ANS

28 ANS

28 ANS

6 NSU

4 ANS

166 ANS

4 ANS

2 ANS

6 NSU

0
0
12)

0
0
0

0
12)

0

0

0

0

12)

0

0

0

0

FILE
GROUP
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC

FILE
GROUP
NUMERIC UNSIGNED
ALPHANUMERIC

AL PHt~NUME RI C

ALPHANUMERIC

NUMERIC UNSIGNED

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

NUMERIC UNSIGNED

D ONLY BYTE SIZE= >017E

D/WRITE BYTE SIZE - >0138

RLAY SEGMENT BYTE SIZE -)0000

\L BYTE SIZE - >0286

ll ERRORS

8 L-iARNINGS

41

NAME

INPUT-FILE
INPUT-REC

INPUT-FLD
AREA-·FLDS

AREA-C
AREA-·A
AREA-B

OUTPUT-FILE
OUTPUT-REC

SEQ-FLD
OUTPUT-FLD

INPUT-NAME

OUTPUT-NAME

COUNT

LARGE-VALUE

PIC-ERROR

INPUT-STATUS

OUTPUT-STATUS

SEQ-VALUE

:0 Model I/III COBOL <RM/COBOL 1.3A) 10/31/80 00:22:43 PAGE 4
:E FILE: ERRXMPL OPTION LIST: <T,P,0=2,X

l REFERENCE /DECL/ *DEST*

·A /0029/ I
·B /0030/
·C /0028/
·FLDS /0027/

/0042/ *0073* 0076
:-CHECK 0068
r-FILE /0012/ /0021/
r-FLD /0026/ /0027/ 0071
r-NAME *001-3* /0040/ *0057*
r-REC /0024/
r-STATUS *0014* /0045/
:-VALUE /0043/
JT-FILE /0015/ /0032/ 0061
JT-FLD /0037/ *0071*
JT-NAME *0016* /0041/ *0059*
JT-REC /0035/ *0062* •0072*
JT-STATUS *0017* /0046/ •
::RROR /0044i'
:-Lo /0036/ *0070*
IALI_IE /0047/ *12'061* *lilO,J..q* 1711il70\

/0051/
0080

/0065/ 0074
0067 /0075/

42

------------TRS-BO f,.. ___________ _

APPENDIX B

TRS-80 (TM) MODEL I/III COBOL

SAMPLE SESSION

____ ., -· ______ , ____ ., - ftadie n1aeii-----------
43

-----------TRS..,80 -"' -----------

This section will take you through a compilation and execution
session, starting with a COBOL source file. We will use the
sample program, C.A.LCXl"lPL/CBL, included with your COBOL
diskettes.

Note for Model III users: References will be made to the
separate Development and Runtime diskettes. Since Model III
diskettes will hold the complete system, your one diskette will
take the place of both the Development and Runtime diskettes.

STEP ONE. Create the source file.

In this session, we will use the sample program, CALCXMPL/CBL,
for the source file. To create your own source file, follow the
instructions in the COBOL Editor (CEDIT) User's Guide.

STEP TWO. Compile.

When compiling (RSCOBOL), the COBOL De-velopment diskette must be
in one of the drives. The program being compiled must also be
on a diskette, although not necessarily on the same one as
RSCOBOL. Our sample program is on both the Development and the
Runtime diskettes. Also, there must be some free space on one
of the diskettes for the Compiler to write the compiled version
of your program.

With the COBOL Development diskette in one of the drives, type
under TRSDOS READY:

RSCOBOL CALCXMPL (T}
The T option causes a listing to be displayed at the console.
See Section 1.3.2 in the COBOL USER'S GUIDE for other Compiler
options that are available.

This command creates an object file that can be executed by the
COBOL Runtime. This file will automatically be named
CALCXMPL/COB. Compiled programs are always written to disk with
the /COB extension and will be written on the first available
diskette that has enough free space.

STEP THREE. Execute.

Model I users take out the Development diskette and replace it
with the Runtime diskette. Also be sure th~t the diskette

-------------- ft~die nlaeli------
44

I

-------------TRS-80 TM------------
containing the newly compiled version of our sample program is
still on one of the drives.

Under TRSDOS READY, type:
RUNCOBOL CALCXMPL

The Runtime will execute the program CALCXMPL/COB. See Section
2.3.1 of the COBOL User's Guide for Runtime options.

----------·-.. ·· .. ---· __ ,,,._, __ ft,~dne ,~haeli-----------
4s

-----------,-TRS-80 -----------

C O N V E R S I O N S E S S I O N
F O R M O D E L I I I U S E R S

The diskettes you have contain all the files needed to
compile and run COBOL Frograms. However, these diskettes are
formatted for a Model 1 and need to be converted to Model
IIIbefore you can use them. You will need one blank formatted
diskette for this procedure.

First, BACKUP your Model III system diskette to the blank
diskette. Take out your old Model III system disk and move the
newly created system disk to drive 0. Use the PURGE:0 (SYS)
command to delete all user files and all unnecessary system
files. CONVERT/CMD is the only system file that is essential
for the following procedure. You must have at least 130 free
granules of space on the new system diskette. Check the
directory to see how much space you do have.

Place the COBOL Development diskette in drive 1. Then use
the conversion utility as shown below.

TRSDOS Ready
CONVERT <ENTER>

The conversion utility will return with a prompt for Source
Drive (you will enter 1) and Destination Drive (you will enter
0). The password on both the Development and the Runtime
diskette is 'PASSWORD'.

The utility will convert the files to Model III format,
writing the converted version onto the diskette in drive O.
Some of the files are passworded and the utility will prompt you
as in the e~ample shown below:

Enter Password for RSCOBOL/CMD?

Just press <ENTER> and the files will be converted and
transferred. Passwording does not prevent you in any way from
using them.

Five of the files are passworded and you will have to press
<ENTER> after every prompt. Four files are not passworded and
will automatically be converted and written on drive 0.

When the conversion is complete the utility displays a

---·-------ftae11entaetl----------
46

J

-----------TRS-BO f~;----------
message telling you that it is done and then returns control to
TRSDOS.

Put the COBOL Runtime diskette in drive 1 and once again
use the CONVERT utility the same way as described above. There
are some passworded files on this diskette also, so you will
have to press <ENTER> when asked for the file passwords. Also,
some of the files are stored on both diskettes. When trying to
CONVERT the file the second time you will get the following
message:

CALCXMPL/COB Existing file. Use it (Y/N/Q)?

Type N to use the previously converted file~ The Y option
will Convert the file again unnecessarily and the Q option will
stop the CONVERT utility. To have more free space on the
diskette you may PURGE the CONVERT utility when the conversion
is complete, but it is not necessary. Label this new diskette
to show that it contains the complete COBOL package.

We suggest that you make backups of your new COBOL diskette
or keep the Model I version COBOL diskettes. This will give you
some security against losing your COBOL package.

You may want a diskette with just the minimal Runtime files
on it for running previously compiled programs. You will need a
blank formatted diskette. BACKUP your COBOL diskette onto this
new diskette. Then use the PURGE command to delete all but the
necessary Runtime files. The only files that you need to keep
on the new diskette are RUNCOBOL/CMD and RSCBLDnn/OBJ. (nn
refers to the version number.)

Remember that only programs that have been already compiled
using RSCOBOL can be used with this Runtime diskette.

----------1ta«11e111aell----------
41

)

}

)

TRS-so@ MODEL I/Ill

RSCOBOL
CEDIT USER1S
GUIDE

Using CEDIT to Create
and Edit COBOL Source
Files.

~TRs-eo

TM

t .. SOFTWARE~_·,
';e.-:

,. I , •

CUSTOM MANUFACTURED IN THE USA FDR RADIO SHACK~ A DIVISION DF TANDY CORP.

-----------TRS-BO f.., -----------

. TRS-80 (TM) MODEL I/III COBOL

C ED I T
SOURCE PROGRAM EDITOR

··--- . - -··---U .:>.c,rt .:> uUJ.U.C,

(C) COPYRIGHT 1980 BY RADIO SHACK,
A DIVISION OF •rANDY CORPORATION

---------ltadaolhaeli---------

TRS-80 MODEL I/III COBOL CEDIT

------------TRS-BO"f~-----------

TABLE OF CONTENTS

INTRODUCTION 3
SOURCE FILE FORM..7\T • 3
TO START THE EDITOR • . . . 4
MODES OF OPERATION • 5
USING '!'!!E r("'\MMZ!.l\TT'\ MODE . 6
SPECIAL KEYS IN THE COMMAND MODE 7
COMMANDS • 8

B (PRINT BOTTOM LINE) 8
C (CHANGE) 8
D (DELETE) 9
E (EDIT) • 9
F (FIND) . 10
H (HARD COPY) 11
I (INSERT) • . 11
L (LOAD FROM DISK) 12
M (MEMORY USED/FREE) 13
N (RENUMBER) • . 13
p (PRINT TO DISPLAY) 14
Q (QUIT SESSION) 14
R (REPLACE) 14
T (PRINT TOP LINE) 15
w (WRITE TO DISK) 15
X (CHANGE WITH PROMPTS) •· 15

----------ftadaolhaeli---------- J

PAGE 2

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-80 '"' ----------

INTRODUCTION

CEDIT lets you create and edit COBOL source files (the files
that are input to the COBOL Compiler).

Capabilities and features:

• Allows you to load in ("chain") multiple source files •
• Single-key abbreviations for many commands
• Powerful intra-line editing mode
. "M" command informs you of memory used/free at any time
• Global string find/change commands
• Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
COBOL compiler, as follows:

1. Files are fixed-length record {FLR) type, LRL=256, as
described in the TRSDOS Reference Manual.

2. Each record in the file corresponds to one line of source
program. The first six data bytes in a record represent the
sequence number in ASCII form followed by the COBOL source code.
The carriage return (<ENTER>) used to terminate the line during
line insertion is stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

------------ fta,ebe lhaell ---------------··

PAGE 3

. TRS-80 MODEL I/III COBOL . CEDIT
------------·TRS-BO.,fi!, __________ _

TO START THE EDITOR

The editor program is included on the COBOL program diskette.
It has the file name CEDIT.

To.use the editor, put the COBOL diskette into one of your
drives, and under TRSDOS READY, type:

CEDIT

The editor will start up with the prompt:

TRS-80 Cobol Editor Ver v.r
Copyright (c) 1980 Tandy Corp.

>

Where vis the version and r is the release number. The>
indicates you are in the command mode.

I

--------- lladtelllaeli · J

PAGE 4

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-BO TM.----------
MODES OF OPERATION

There are three modes of operation:
• COMMAND, for entering the editor commands
• INSERT, for entering your text lines
• EDIT, for interactive editing of a line of text

COMMAND MODE
The> prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

INSERT MODE
You enter text one line at~ time: a line ~on=i:ts of ~p to 255
characters, including the five-digit line number provided by
CEDIT. Line numbers can range from Oto 65535.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the COBOL Language Reference Manual for
column-field uses in COBOL source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAK>. See I Command for details.

EDIT MODE
There are many powerful edit sub-commands--identical in most
cases to those in Model I and III BASIC's Edit Mode. There is
also a sub-edit insertion mode in which the keys you type are
inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

-----------Ra«11elhaell----------
PAGE 5

TRS-80 MODEL I/III COBOL ·CEDIT

-----------TRS-BO 1"'------------

OSING THE COMMAND MODE

Special terms us,~d in the command descriptions:

"text", "text buffer", "text area"
All refer to the COBOL source program currently in RAM.

"current line"
The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"incr~~e!'!t"
The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line-reference"
Either an actual line number from Oto 65535, or one of the
following special abbreviations:

Symbol

*

"line-range 11

Meaning
Beginning line of text (lowest-numbered line}
Current line
Last line of text (highest-numbered line)

This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample
Command

PlO0
Pl00: 300
P#:.

"delimiter 11

Meaning

Prints line 100 only
Prints all lines from 100 to 300
Prints all lines from beginning to current

A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

------------Radio li1aell--;-... -,_ .. •-· -----------

PAGE 6

I

TRS-80 MODEL I/III COBOL CEDIT
-----------TRS-ao•~;-----------

! "I$ I & ' () * +, - • / .: 1 <.= >? .

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use •••

'THIS" MARK'
/X'8000'/
&-------&

Marks this string •••

THIS" MARK
X'8000'

(seven blanks)

(The•-• symbol represents a blank space. It is used only where
necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the command you are entering, or to
abort a command which is currently being executed.

<right-arrow>
Advances the cursor to the next four-column boundary
(boundaries are at columns 4, 8, 12, •••)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

<up-arrow>
Pressing this,key at· the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

shift<left-arrow>
Erases the command you are entering.

<@>
Pauses Hand P commands. Press any other key to continue.

----------ftadaelllaell----------
PAGE 7

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-BO'f~>----------

COMMANDS

Note: Spaces are not significant in command lines. For example,
P l : 5

has the same effect as
Pl:S

The P command is explained later on. ,

B

Displays the bottom line (last line in the text area).

C/search-string/replacement-strinq/n

Finds, changes, and displays the first n lines, from the current
line, that contain search-string. In each of these lines
search-string is changed to replacement-string. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED AND
CHANGED. If the end of text is reached before n finds, the
message "st.ring not found" will be displayed.

Upon completion cf the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ is a sequence of characters delimited by
a matched pair of characters from the set:

!"#$%&' ()*+,-./:;<=>?

replacement-string/ is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample
Commands

C/VAR=/NET=/

C "VAR="NET="

Notes

Changes the first occurrence of
"VAR=" to "NET=" in the first
line that contains it.
Same as above.

----------- lladae/haeK----------
PAGE 8

TRS-80 MODEL I/III COBOL CEDIT

-----------TRs .. so '"' -----------
c/RETRY/R/4 Changes the first occurrence of

"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*
Changes the first occurrence of
."MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA" to "" (null string)

D line-range

i.e., deletes the first "EXTRA" in every
line that contains it.

Deletes lines in the specified range and renumbers the following
lines using the current increment. If line-range is omitted,
the current line is deleted.

Sample
Commands Notes

D. or D
D2
D98:115

D1000:*

E line-reference

Deletes the current line.
Deletes line number 2.
Deletes lines found in the range 98 to
115.
Deletes all lines numbered 1000 or
higher to end of text.

Starts edit mode using the specified line. If line-reference is
omitted, the current line is used.

Edit sub-commands:
<ENTER> Ends editing and returns to command mode.

shift<up-arrow> Causes escape from sub-edit insertion
(X, I, and H sub-commands) and returns to
edit mode.

n <SPCBAR> Advances cursor n columns.
If n is omitted, 1 is used.

L "Lists" working copy of the line and
starts a new working copy.

X "Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.

I Enters sub-edit "insertion" mode at the

----------- ftae1elhaell-----------
PAGE 9

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-BO f~ ----------

A

E

Q

H

no

nC

nSc

nKc

F/search-string/n

current cursor position; use shift<up-arrow>
to escape to edit mode.

("Again") Cancels changes and starts a new
working copy of the line.

("End") Saves edited line and exits to
command mode,> prompt.

("Quit") Cancels changes and returns to
command mode,> prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

"Deletes" n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

"Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

("Search") Moves cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

("Kill") Deletes all characters from current
cursor position up to nth occurrence
of character c, counting from current
cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>
to see the line with characters deleted.

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.
/search-string/ is a sequence of characters delimited by

----------- ltadaelhaell----------
PAGE 10

l

]

TRS-80 MODEL I/III COBOL CltDIT

-----------TRS-80 T~-----------
a matched pair of delimiters chosen from the set:

! "i$%& I {) *+, -. /:; (=>?

n Tells the maximum number of .,finds" you want. n can be a
number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is
listed.

Sample
Commands

F/VAR=/

F"VAR="
F/RETRY/4

F/MISPELING/*

H line-range

Notes

Finds and displays the first line that
contains the string "VAR=".
Same as above.
Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".
Finds and displavs every line containing
at least one occurrence of .,MISPELING".

("Hard-copy") Lists to the printer all lines found in the
specified range. If line-range is omitted, all the lines after
and including the current line are printed.

The printer should be initialized (with FORMS) before you
execute this command.

Sample
Commands

Hi:*
H7020
H672:800

Notes

Lists all lines to the printer.
Lists line 7020 to the printer.
Lists all lines found in the range 672 to
800.

I start-line, increment

Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

,increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

-----------ftard1olhaeil---......... -------
PAGE 11

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-BO f~ ----------

next line number (start-line+ increment).

Special Keys in the Insert Mode

-> Advances the cursor to the next eight-column
boundary (8 , 16 , 2 4 , •••) •

shift<- Erases the line and starts over.

<-

<ENTER>

Backspaces the cursor and erases the character.

Marks the end of the current line. The editor will
store the current line and start a new one, using
increment to generate the next line number.

Overwriting lines
An automatic line numberer is provided to prevent you from
accidentally overwriting lines already entered. If a line
number conflict occurs the complete file will be renumbered from
the c-::rre~t start-li!!e by the cnrrPnt: increment.

Sample
Connnands

I

I,l

I45,2

IlOO

L filespec

Notes

Start inserting at current line number,
using current increment.
Start inserting at current line number,
using las an increment. If current line
number is in use, start with current line
plus 1.
Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.
Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first. If you chain
the new text onto the old, the line numbers will start at the
current start-line and be incremented by the current increment.

filespec is a TRSDOS file specification for a FLR text file.
The file may have been created by this COBOL editor or by
another means. However, it must be in the COBOL source file
format. (See Source File Format.)

----------ftadaelhaell----------
PAGE 12

l

TRS-80 MODEL I/III COBOL CEDIT

-----------TRs .. eo f,.. ----------

M

Sample
Commands

L DEMO/BAS: 1
L XDATA

Notes

Load DEMO/BAS from drive 1.
Load XDATA

Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample
Command

M

Notes

A typical response in a 48K system might
might look like this:
000427- TEXT
(J J '.:UH 3 - MEMORY
Meaning you have 427 bytes of text, and
39383 free bytes of memory available.

N start-line,increment

Renumbers the entire text.

Note: The renumbering commands DO NOT RENUMBER LINE REFERENCES
inside your program text; do not use them unless you are not
concerned wth line references (GOTO, IF ..• THEN .•• , GOSUB,
etc.). To renumber your program properly, use the Compiler
COBOL RENUMBER command.

start-line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

The current line before numbering is also the current line after
renumbering.

Sample
Commands

N
NlOO

Notes

Repeats the last renumbering command.
Renumbered text will start with line 100;
successive lines computed with the

------------ ftadt01hacm------------
PAGE 13

'l'RS-80 MODE! .. I/III COBOL CEDIT

----------,---TRS-80 .ti.I-------------
Nl00, 25

current value of increment.
As above: line numbers at increments
of 25.

P line-range

Prints the specified lines to the display. If line-range is
omitted, 14 lines starting at the current line are displayed.

Q

Sample
Commands

p

P233
P.
P*
Pl40:615

Notes

Prints 14 lines starting at current
line.
Prints line 233.
Prints the current line.
Prints the last line.
Prints the lines within the specified
ranae. Lines 140 ~nd 615 don't have to
b~ existing line numbers.

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-reference, increment

Replaces contents of the specified line and continue in insert
mode. If line-reference is omitted, the current line is used.
If increment is omitted, the current increment is used. Also
renumbers the complete file using the current start-line and the
new increment.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.
After you press <ENTER>, the editor will contine in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands Notes

Rl25,3 Prompts you to insert replacement
text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

-----•-•A-lllSlt-~ · · un,-b---•w·~ ftad1e lhaell--------------
PAGE 14

I

TRS-80 MODEL I/III COBOL CEDIT

-----------TRS-80 f-, -----------

R*

T

Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

Displays the top line (first line in the text area)

W filespec

Writes the text in RAM into the specified file.·

filespec is a TRSDOS file specification. If file already exists,
its previous contents will be lost.

Sample
Commands

W DEMO/CBL:l
W XDATA

Notes

Save DEMO/CBL onto drive 1.
Save XDATA/CBL onto first available drive.

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you {Change?)
each time it finds search-string. If you answer Y, the line will
be changed; any other answer leaves the line unchanged. In
either case, the process continues until all first occurrences
have been found.

Sample
Command
--------..

Notes

X/MISPELING/MSP/*
Changes the first occurrence of
"MISPELING" to "MSP"
in every line that contains it, but asks
you to confirm each change before it
is made.

------------- ftadtelhaeK------------
PAGE 15

)

)

TRs-ao@) MODEL 1/111

RSCOBOL
LANGUAGE
REFERENCE ·
MANUAL

A Description of the
RSCOBOL Programming
Language

~ TRS-BD

TM

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK~ A DIVISION OF TANDY CORP.

I/III

COBOL LANGUAGE MANUAL

JANU,•.\HY, 1981

COPYRIGHT NOTICES

TRS-80 MODEL II COBOL
(C) (P) 1980 by Ryan-McFarland Corporation, Aptoa, California
95003; Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL II TRSDOS DISK OPERATING SYSTEM (TRSDOS)
(C) (P) 1980 by Tandy Corporation. All rights reserved.

TRS-80 MODEL II COBOL LANGUAGE REFERENCE MANUAL
(C) 1980 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights rserved.

Reproduction or use, without express permission, of editorial or
pictorial content, in any manner, is prohibited. While every
precaution has been taken in the preparation of this book, Tandy
Corporation assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the
use of the information contained herein.

I

PREFACE

This reference document describes the COBOL Language as
implemented on the Radio Shack TRS-80 Madel II Microcomputer under
the TRSDOS Disk Operating S1:1stem.

It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-80 Model II Microcomputer, and the
TRSDOS Operating System. The reader is specifically referr&d to
the following publications:

TRS-80 Model II CODOL User's Guide
TRS-80 Model II Operation Manual
TRS-80 Model II Disk Operating System Reference Manual

ACKNOWLEDGEMENT

Much of the material in this matiual is extracted from the ANSI
X3.23-1974 COBOL Standard. Accordingly, the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of an~
company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection there1..11ith.

The authors and copyright holders of the copyrighted material used
herein

~LOW-MAT!C l~~~~~~~~~ n~ ~~~~~~ ~~nrl Cn~~n~~tion), Progrdmming
for the UNIVAC I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand CoT'poration; IBM Commercial
Translator Form No. F28- 8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specilica.lly authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

l

TABLE OF CONTENTS

Page

I. INTRODUCTION. 1

INTRODUCTION TO COBOL........................... 2
What is COBOL?.............................. 2
The History of COBOL........................ 3
The Standardization of COBOL................ 4

CONVENTIONS USED IN THIS MANUAL. 5
Words. 5
Brae kets and Braces. 5
Ellipses.................................... 5
Punctuation................................. b
Speciai Char3cters.......................... 6
Svstem Dependent Information................ 6

I I. THE STRUCTURE OF THE COBOL LANGUAGE ·. . . 7

THE LANGUAGE STRUCTURE.......................... 8
Cha-rac ter Set. 8
Separators.................................. 10
Character-Strings. 11
COBOL Words. 11
User Words. 12
Reserved Words.............................. 15
Literals. 18
Picture String.............................. 19
Comment-Entry. 19
System Names................................ 19

THE PROGRAM STRUCTURE 20
Soul"'ce Format............................. . . 20
Statements. 22
Sentences................................... 23
Clause'i and Entries.. 23
Paragraphs. 24
Sections.................................... 24
Divisions................................... 24

THE COPY STATEMENT. 25

III. IDENTIFICATION DIVISION

l NTRODUCT I ON

PROORAM IDENTIFICATION
The PROGRAM-ID Paragraph
The AUTHOR,. INSTALLATION, DATE-WRITTEN,

SECURITY Pa'('agraphs.

IV. ENVIRONMENT DIVISION

INTRODUCTION•.....

CONFIGURATION SECTION•........
The SOURCE-COMPUTER Paragraph
The OBJECT-COMPUTER Paragraph
The SPECIAL-NAMES Paragraph

INPUT-OUTPUT SECTION
The FILE-CONTROL Paragraph ,
Th& SP-~U&ntial File Control Ent~~
The Relative File Control Entry
The Indexed File Control EntT'y
The I-0 CONTROL Paragraph

V. DAT A D 1 VI S I ON.

INTRODUCTION•........

FILE SECTION
The File Description Entry
The BLOCK CONTAINS Clause
The RECORD CONTAINS Clause ,
The LABEL RECORD Clause
The VALUE OF Clause•........
The DATA RECORDS Clause

WORK I NO-STORAGE SECT I ON•....

LINKAGE SECTION

RECORD DESCRIPTION ENTRY
Level-Numb er s
Elementary Items

77 LEVEL DESCRIPTION ENTRY

27

28 l
28
29

29

30

31

32
32
33
34

36
36
37
39
41
44

45

46

48
49
50
51
S2
52
53

54

54

55
55
55

56

THE DATA DESCRIPTION ENTR~ 57
The Level-Number 60
The Data Name ar FILLER Clause 61
The REDEFINES Clause. 62
The PICTURE Clause••...•.•... 64
The USAGE Clause 75
The SIGN Cl .. 11Jsa. • • . • • • . . . 77
Th• OCCURS Clause 78
The SYNCHRONIZED Clause 80
The "'IUSTIFIED Clause........................ 82
The BLANK WHEN ZERO Clause 83
The VALUE IS Clause , 84
The RENAMES Clause... 87

DATA STRUCTURES•.......•.•.•........ ~ . 89
C 1 asses of Data. • • . • . . 89
Representation ol Numeric Items.... 90
Representation of Algebraic Signs......... . . . 90
Standard Alignment Rules 91

QUALIFICATION. • 92

SUBSCRIPTING. • • • 94

INDEXING. 95

IDENTIFIER , 96 ·

CONDIT I ON-NAME. 97

TABLE HANDLING. 98

VI. PROCEDURE DIVISION. 101

THE PROCEDURE DIVISION. 102
Structure ,................... 103
Declaratives 104
Procedur-es.................................. 104
Ex e c u t i on . • 1 04

PROCEDURE REFERENCES 105

SEGMENTATION. • . 107
Segments. 107
Segment.;;ition Classi·Fication 108
Segmentation ContT'ol. 108
Restrictions on Program Flaw 108

THE USE STATEMENT. • 110

ARITHMETIC STATEMENTS 112
Arithmetic Expressions•........... 112
Arithmetic Operators•..•......... 113
Formation and Evaluation Rules 113

CONDITIONALS. • 114
Relation Condition•...... 115
Class Condition•.....•........ 118
Condition-name (Conditional Variable) 119
Switch-Status Condition 120
Complex Conditions.......................... 120
Negated Simple Conditions•.... 121
Combined and Negated Combined

Conditions•..... 121
Condition Evaluation Rules•........ -122

SEQUENTIAL ORGANIZATION INPUT-OUTPUT 123
Function. • 123
Organization. 123
Access Mode -. 123 ·
Cut'rent Record Pointer. 123
I-0 Status. 1_24

RELATIVE ORGANIZATION INPUT-OUTPUT 126
Function. 126
Organization. • 126
Access Modes................................ 126
Current Record Pointer...................... 127
I-0 Status. 127
The INVALID KEY Condition 129
The AT END Condition•......... 130

INDEXED ORGANIZATION INPUT-OUTPUT•... 131
Fune ti on. 131
01'gani zat ion ..•.................. : 131
Access Modes. 131
CuTrent Record Pointer. 132
I-0 Status ·. . . 132
The INVALID KEY Condition 136
The AT END Condition•.......... 136

PROCEDURAL STATEMENTS. • . . . 137
ACCEPT ... FROM Statement. 137
ACCEPT Statement <Terminal I-0). 139
ADD Statement. • 145
ALTER Statement. • • . 149
CALL Statement. 150
CLOSE Statem~nt <Seq_uential I-0)............ 152
CLOSE Statement <Relative & Indexed I-O>.... 154
COMPUTE Statement : 155
DELETE Statement (Relative &c Indexed I-O>... 157
DISPLAY Statement <Te1'minal I-0>............ 158
DIVIDE Statement. 162
EXIT Statement. • . 165
QO TO Statement. 166
IF Statement. 167
INSPECT Statement• 169
MOVE Statement. • . . . 177
MULTIPLY Statement. 182
OPEN Statement <Seq_uential I-0>............. 184
OPEN Statement <Relative & Indexed I-0)..... 188
PERFORM Statement. • 192
READ Statement (Sequential I-0) 203
READ Statement (Relative & Indexed I-0) 205
REWRITE Statement <Seq_uential I-0) 209
REWRITE Statement <Relative & Indexed I-0) .. 211
SET Statement. 213
START Statement <Relative & Indexed I-0) 215
STOP Statement. 217
SUBTRACT Statement. 218
UNLOCK Statement. 222
WRITE Statement (Sequential I-0>. 223
WRITE Statement <Relative & Indexed I-0) 226

APPENDIX A: ERROR MESSAGES•.. 229

APPENDIX B: RESERVED WORDS 237

APPENDIX C: GLOSSARY. 242

APPENDIX D: COMPOSITE LANGUAGE SKELETON 267

I

INTRODUCTION

PAGE

INTRODUCTION TO COBOL

What is COBOL?

COBOL <Common Business Oriented Language) is an English oriented
programming language designed primarily for developing business
•pplications on computers. It is described as English oriented
because its free form enables a programmer to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated to
serve as communication between the programmer and the computer.
The COBOL program <the source program> which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
(tne ODJect progrdmi.

Although each computer has its own unique COBOL compiler program,
an industry-wide COBOL effort has resulted in a degree of
compatibility so that a COBOL source program can be exchanged
among different computers of one manufacturer or among computers
of different manufacturers.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language, it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language 9acilitates
communication not only between programmer and management, but also
among programmers, with a minimum of additional documentation. The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It is
precisely here that the attention of a good COBOL programmer is
centered. He can produce a solution in the form of a
well-integrated COBOL program by combining the
following: knowledge of the problem, programming technique,
capability of the equipment, and familiarity with the available
elements of the COBOL language.

PAQE 2

The History of COBOL

Development of the COBOL programming language is a continuing
process performed by the Programming Language Committee <PLC> of
the COnfer-ence on DA·ta SYstems Languages <CODASVL). This committee
is made up of representatives of computer manufacturers and
computer users.

The first version of the COBOL programming language to be
published by CODASYL was called COBOL-60. The second version,
called COBOL-61, contained changes in the organization of the
Procedure Division and thus was not completely compatible with
COBOL-60.

In 1963 the third version, called COBOL-61 Extended, was released.
It was basically COBOL-61 with the addition of the sort feature,
the addition of the report writer Feature, and the modification of
the arithmetics to include multiple receiving fields and the
CORRESPONDING option.

The fourth
consists of
options to
mass storage

version of the COBOL programming language, COBOL-6S,
COBOL-61 Extended with the inclusion of a series of

provide for the reading, writing, and processing oF
files and the addition of table handling features.

Beginning in 1968 the CODASYL COBOL Programming Language Committee
began to report its developmental work in a Journal of
Development. The first report to be published was the CODASYL
COBOL Journal of Development -- 1968. This Journal is the official
report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities or CODASYL through July
1968. COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969, 1970 and 1973. Each documented the developmental activities
of CODA9YL from the previous report, resulting in continually
varying COBOL definitions.

PAGE 3

The Standardization of COBOL

In September 1962 the American National Standards Institute (ANSI)
set up a committee to work on the definition of a standard COBOL
programming language. This standardization effort was based on the
technical content of COBOL as defined by CODASVL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through January 1968. This
first version was called American National Stan~ard COBOL 1968.

In May 1974 a revision of American National Standard COBOL was
approved. This revision, called American National Standard COBOL
1974, is based upon the developmental work of CODASYL through
December 1971. The COBOL programming language and compiler
described in this document is based on the American National
Standard COBOL 1974.

PAGE 4

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capabilities of
COBOL in a generally accepted sgntax consistent with the 1974
American National Standard COBOL document. As a result, COBOL
Svntax is specified by formats employing special notation.

Words

All underlined uppercase words are key words and are re~uired when
th• functions of which they are a part are used. Uppercase words
which are not underlined are optional and may or may not be
present in the source program. Uppercase words, whether underlined
or not, must be spelled correctly.

Lowercase words are generic terms used to represent COBOL words,
li~cTals, PtCiurtc ~na~acter-strings, comment-entries, or a
complete syntactical entry that must ,be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets, CJ,
that portion may be included or omitted at the user's choice.
Braces, <>, enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both cases, a choice is indicated by vertically
stacking the possibilities. When brackets or braces enclose a
portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option
within braces contains only reserved words that are not key words,
then the option is a default option Cimplicity selected unless one
of the other options is explicitly indicated>.

Ellipsis

The ellipsis (... >represents the position at which repetition mag
occur at the user's option.

PAGE 5

Punctuation

The punctuation ~haracters comma and semicolon are shown in some
formats. Where shown in the formats, they are optional and may be
in~luded or omitted by the user. In the source program these two
punctuation characters are interchangeable and either may be used
anvwhere one of them is shown in the formats. Neither one may,
appear immediately preceding the first clause of an entry or
paragraph.

If desired, a semicolon or comma may be used between statements in
the Procedure Division.

Paragraphs within the Identification and Procedure Divisi9ns, and
the entries within the Environment and Data Divisions must be
terminated by the separator period.

Special Characters

The characters '+', '-', '>', '<', '=', when appearing in formats,
although not underlined, are re~uired when such formats are used.

System Dependent Information

Selected features in ANSI COBOL are intended for
implementor, to accomodate the capabilities and
the host system. These system dependent items
the COBOL Users Guide.

PAGE 6

definition by the
restrictions of

are summarized in

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the chaT'acteT'. A
chaT'acter is a digit, a letter of the alphabet, or a SI.Jmbol. A
COBOL word is one possible result obtained when one or more COBOL
characters are Joined in a sequence of contiguous characters. Just
as English words are determined bu rules of spelling, so COBOL
woT'ds are foTmed by following a specific set of rules.

Using the COBOL rules of grammar, the COBOL words and COBOL
punctuation characteT's are combined into statements, sentences,
paT'agraphs, and sections. When urriting normal English, a failure
to follow the rules of grammar and sentence structure may cause
misunderstandings the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prere~uisite to writing a workable COBOL program.

ChaT'acter Set

The COBOL character set consists of fiftv-one characters:

Digits

Letters

Punctuation

Special

H

(

)

),

<
+

0 through 9

A through Z

Blank (or space)
Comma
Semicolon
Period
Quote
Left parenthesis
Right parenthesis

Greater than
Less than
Plus
Minus <or hyphen)

* Asterisk
/ Slash <or Stroke>
= Equal
$ Currency

These characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator
character-string.

or a

Th• COBOL character set is a proper subset o, the ASCII character
code set native to the computer. The complete character set may be
used onlg within non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete
character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value

Spac•
' II

• • X
le ,
(

)

* +
I

I
0
1
2
3
4
5
6
7
B
9

;

<
=
>
?

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

· 55
56
57
58
59
60
61
62
63

PAOE

• A
B
C
D
E
F
g
H
I
J
K
L
M
N
0
p
0
R
s
T
u
V
w
X
y
z
[

\
]

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
SC
5D
5E
5F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Separators

A separator is a string of one or more punctuation characters.

Punctuation characters belong to the Following set:

=
(

If

)

;

Space
Comma.
Equal sign
Left parenthesis
Period
Quotation mark (double)
Right parenthesis
Semicolon

Separators are formed according to the following rules:

l. A space is
separator,

a separator. Anywhere a space
more than one space may be used.

is used as a

2. Comma, semicolon, and period are separators when immediately
followed by a space. These separators may appear only when
explicitly permitted.

3. Parentheses are separators which may appear only in balanced
pairs of left and right parentheses delimiting subscripts,
indices, arithmetic expressions or conditions.

Left parentheses must be preceded by a separator space or left
pat"enthesis.

Right parenthesis must be followed by one of the separators:
space, period, semicolon, comma OT' right parenthesis.

4. Guotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the literal is
continued.

An opening quotation m.ar k must be immediate l '=' preceded by a
space or left parenthesis.

A closing quotation mark must be immediately tollowed by one
of the separators: space, comma, semicolon, period o-r right
parenthesis.

PAGE 10

S. Th• sep•rator space may optionally immediately precede all
••par•tors except:

As specified bv r•ference format rules.

As the separator c 1 osi ng q,uotat ion mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except- the opening q,uotation mark. In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
the separators space, comma, semicolon, or period .

Th;:; •~laa de ~ct a~?lY tc the c~a1Q~t~1;
literals, picture strings, or comments.

Character-Strings

.... .: .&.L ~ -
w•v11.&.i1

A character-string is a seq,uence of one or more characters that
form a COBOL word, literal, picture string, or comment. A
character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters
which form either a user word or a reserved word. All words are
one or the other.

PAGE 11

Usel" Words

User words are composed of the alphabetic characters, the numbers,
and the hyphen c harc3c ter. A user word must not begin or end with a
hyphen. With the exception of paragraph-name, section-name~
level-number and segment-number, all user-defined words must
contain at least one alphabetic character. There are twelve types
of user words:

program-name
file-name
record-name
data-name
paragraph-name
section-name

Program-Name

condition-name
index-name
alphabet-name
text-name
level-number
segment-number

T~~ ~!'~~!'~!!!-~:3~'? i'.:!<?~ti~ies th'!." CDBIJL 5".'~J""~'° ~rut nl}JRrt: !"T"n~T"~m
The name must contain at least one alphabetic character. Only the
first 6 characters are associated with the obJect program.

File-Name

File-names are the internal names for ~iles accessed by the source
program. They are not necessarily the same as the external names
given to the files. File-names must contain at least one
alphabetic character and must be unique.

Record-Name

Record-names are used to name data records within a file. They
must contain at least one alphabetic character and, if not unique,
must be made unique by qualification with the file name.

Data-Name

A group of contiguous characters or a word of binary data treated
as a unit of data is called a data item, named by a data-name. A
data-name must contain at least one alphabetic character.
References to data items must be made unique by qualification or
the appending of subscripts <o~ indices) or both. Complete unique
references to data items are called identifiers.

PAGE 12

PaT'agT'aph-Name

A paragraph-name is a procedure name that identifies the beginning
of a set of COBOL procedural sentences. If not uni~ue, a
paragraph-name must be made unique by qualification with a
section-name.

Section-Name

A section-name is a procedure name that identifies the beginning
of a set of paragraphs. Section-names must be unique.

Condition-Name

A condition-name may b• defined in the SPECIAL~NAMES paragraph
within the Environment Division or in a level-number 88
description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or.OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value,
set of values, or range of values within a complete set of values
that a data item may assume. The data item itself is called a
conditional variable.

A condition-name is used only in conditions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Index-Name

An index-name names an index associated with a specific table. It
must contain at least one alphabetic character and must be unique.

Alphabet-Name

An alphabet-name is used to specify a character code set. It must
contain at least one alphabetic character and must be unique.

Text-Name

A text-name is the name of a COBOL library text file. It must
correspond exactly to a valid file access-name as described in the
operating system documentation.

PAGE 13

Level-Number

A level-number is used to speci/y the position of a data item
within a data hierarchy. A level-number is a one- or two-digit
number in the range 01-49, 66, 77 or 88.

Level-numbers 66, 77 and 88 identify special properties of a data
description entry.

Segment-Number

A segment-number specifies the segmentation classification of a
section. It is a one- to two-digit number in the range 01-99.

PAGE 14

Reserved Words

Th• structure of COBOL governs the use of certain COBOL words
called reserved words. Reserved words, recognized by the COBOL
compiler, aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
language. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized by the
compiler is shown in Appendix B.

Five kinds ol reserved words are recognized bu the compiler:

Key Words

Kev words
Optional words
Connectives
Fi~urative constants
Special-characters

Ke~ words are re~uired elements of COBOL formats. Their presence
indicates specific compiler action.

Optional Words

Optional words are optional elements of COBOL formats.
presence has no affect on the obJect program.

Connectives

Their

The connectives OF and IN are used interchangeably to connect
4ualifiers to a user word. The words AND and OR are logic-1
connectives and are used in the formation of conditions.

PAGE 15

Figurative Constants

Figurative constants id~ntify commonly used constant values. These
constant values are generated by the compiler according to the
context in which the references occur. Nate that figuratives
represent values, not literal occurTences. Thus QUOTE cannot be
used to delimit a nonnumeric literal, SPACE is not a separator,
and so forth. Singular and plural ,orms o~ figuratives are
equivalent and may be used interchangeably.

ZERO
ZEROS
ZEROES

Represents the value O or one or more zero (0) characters,
depending on context.

SPACE
SPACES

Represents one or more space < > characters.

HIGH-VALUE
HIGH-VALUES

Represents one or more of the highest characters in the
collating sequence (hexadecimal FF>.

LOW-VALUE
LOW-VALUES

Represents one or more of the lowest characters in the
collating se~uence (hexadecimal 00).

QUOTE
GUOTES

Represents one or more quote (") characters.

PAGE 16

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a figurative
constant. When a figurative constant is used, the word ALL is
redundant.

When a figurative constant represents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is associated with another data
item, as when the figurative constant is moved to or compared
with another data item, the string of characters specified by
the figurative constant is repeated character-by-character on
the right until .the size of the resultant string is e~ual to
the size in characters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2. When a fi~urative
data item, as when
DISPLAY or STOP
character.

constant is not associated with another
the figurative constant appears in a

statement, the length of the string is one

A figurative constant may be used wherever a literal appears in a
format, except that whenever the literal is restricted to having
only numeric characters in it, the only figurative constant
permitted is ZERO (ZEROS, ZEROES>.

Each reserved word which
constant value is a distinct
of the construction 'ALL
distinct character-strings.

Special Characters

is used to reference a figurative
character-string with the exception
literal' which is composed of two

The special character words are the arithmetic operators and
relation characters:

+ Plus sign (indexing)
Minus sign (indexing>

> Greater than
< Less than
= E~ual to

PAGE 17

Literals

A literal is a character-string whose Form determines its value.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in ~uotes. Any
characters in the COBOL character set may be used. Guote
characters within the string are represented by two contiguous
quotes. The value of the literal is the string itself excluding
the delimiting quotes and one of each contiguous pair of imbedded
quotes. The value or the literal may contain rrom l to 2047
c:harac ters.

Examples:

Literal

HAGE? 11

"""TWENTY""? 11

Value

AGE?
"TWENTY"?

U It II II U illegal Codd number or ~uotes)

Numeric Literals

A numeric literal represents a numeric value,
character-string. Numeric literals are composed according
following rules:

1. The literal must contain from 1 to 18 digits.

not a
to the

2. The literal may contain a single plus or minus sign iP it is
the first character.

3. The literal may contain a single decimal point if it is not
the last character. The decimal point must be represented with
a comma if the DECIMAL-POINT IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph.

Ex.amp les:

1234
+1234
-1. 234

. 1234
+. 1234

PAGE 18

Pictu'r• St,-ing

A picture string consists of certain combinations
f,-om the COBOL character set used as svmbols.
ch•,-acter appearing as part of a picture string is
be a sumbol, not a punctuation character.

Comment-Entry

of characters
Any punctuation

considered to

A comment-entry is an entry in the Identification Division that
mav contain any characters from the computer's character set.

Bvstem Names

System names identify certain hardware or software system
components. System names consist of device-names and switch-names.

Device-Names

PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDON

S111itch-Names

SWITCH-1

SWITCH-8

Component

printer or print file
input only device
output only device
input-output device
disc

Component

software switches

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence or formatted lines (or
records) of 80 characters or less. Each line is divided into -five
areas:

Columns

1-6
7
8-11
12-72
73-80

Area

sequence number
indicator
A
B
identification

The sequence number and identification areas are used for clerical
.,,f--••--~A,.._,,..L,.;:_,_ -••-flll'l-,l'-MV-
\ol'l.l\o,\JIUl,;fl\lQV ... WII t"WI "'•....--too Tl-1,ftH ."!'l ft . ·•--,, -· - rnmnilQT' -· .

The indicator area is used for denoting line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the
following rules:

1. Division headers, section headers, paragraph headers,
section-names, and paragraph-names must begin in area A.

2; The Data Division level indicator FD and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B, although Bis preferable.

3. The key word DECLARATIVES and the key words END DECLARATIVES,
precede and follow, respectively, the declaratives portion of
the Procedure Division. Each must appear on a line by itself
and each must begin in area A and be followed by a period and
a space.

4. Any other language
immediately follows,

element must begin in area B unless it
on the same line, an element in area A.

PAGE 20

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than
one line, it may be continued by starting subsequent line<s> in
area B. These subse~uent lines are called the continuation
line<s>. The line being continued is called the continued line.
Any word or literal may be broken in such a way that part of it
appears on a continuation line, according to the following rules:

1. A hyphen in the indicator area of a line indicates that the
first nonblank character in area B of the current line is the
successor of the last nonblank character of th~ preceding line
without any intervening space. However, if the continued line
contains a nonnumeric literal without closing quotation mark,
the first nonblank character in area Bon the continuation
line must be a quotation mark, and the conti~uation starts
with the character immediately after that quotation mark. All
spaces at the end of the continued line are considered part of
the literal. Area A of continuation line must be blank.

2. If there is no hyphen in the indicator area o, a line, it is
assumed that the last ~ha~~rt~~ !~ t~~ ~~~~~ding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B areas.
A blank line can appear anywhere in the source program, except
immediately preceding a continuation line with a hyphen in the
indicator area.

Comment Lines

A comment line is any line with an asterisk <*> in the indicator
area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any
combination of characters from the computer 1 s character set may be
included in area A and area B of that lin~. The asterisk and the
characters in area A and area B will be produced on the listing
but serve as documentation only.·

Successive comment lines are allowed. Continuation of comment
lines is permitted, except that each continuation line must
contain an asterisk in the indicator area.

A special form of comment line represented by a slash (/) in the
indicator area of the line causes page eJection prior to printing
th• comment.

PAQE 21

Debugging Lines

A debugging line is any line with a Din the indicator area of the
line. Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that cont~ins debugging lines must be syntactically
correct with or without the debugging lines.

A debugging line will be
characteristics of a comment line
specified at compiler invocation.

considered to
if the debug

have all
option is

the
not

Successive debugging
lines is permitted,
contain a Din the
be broken across two

lines are allowed. Continuation of debugging
except that each continuation line must

indicator area, and character strings may not
1 ines.

Statements

COBOL statements always begin with a key word called a verb. There
are three kinds of statements: di l'ective, conditional, and
imperative.

A directive statement specifies action to be taken by the compiler
during compilation. The directive statements are:

The COPY and USE statements.

A conditional statement specifies that the truth
condition is to be determined and that the subsequent
the obJect program is dependent on this truth
conditional statements are:

An IF statement.

value of a
action of

value. The

A READ statement with the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase.

PAGE 22

7

An imperative statement specifies an unconditional action to be
taken by the obJect program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE,
phrase.

REWRITE or START statement without the INVALID KEV

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement <ADD, COMPUTE, DIVIDE,
SUBTRACT> without the ON SIZE ERROR phrase.

MULTIPLY,

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative-statement appears in the Pormat of a
COBOL verb, it refers to one or more consecutive imperative
statements. The ~equence ends with a period separator or an ELSE
associated with an !F verb.

Sentences

A sentence is a sequence of one or more statements terminated by
the period separator. There are three kinds of sentences:
directive, conditional, and imperative.

A directive
statement.

sentence may contain only a single directive

A conditional sentence is a conditional statement, optionally
preceded by a sequence of imperative statements, terminated by a
period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive
of con sec ut i ve c 1 a uses. Each c 1 a use
entry. Clauses are separated by
separators. The entry is terminated

PAGE 23

or declaratory nature composed
specifies an attribute of the

space, comma, or semicolon
by a period separator.

Paragraphs

A paragraph is a sequence of an arbitrarg number, which may
zero, of sentences or entries. In the Identification
Envi l'Onment Divisions, each paragraph beg ins with a T'eserved
called a paragraph header. In the Procedure Division,
paragraph begins with a user-defined pa~agraph-name.

Sections

be
and

word
each

A section is a sequence or an arbitraT'y number, which may be zero,
of paragraphs in the Environment and Procedure Divisions and a
sequence of an a~bitrary number, which may be zero, oF entries in
the Data Division. In the Environment and Data Divisions, each
section begins with re~erved words called a section header. In the
Procedure Division, each section begins with a user-defined
sec ti on-name.

Divisions

Each COBOL program consists of four divisions; each is composed of
paragraphs or sections. These are
Data, and Procedure divisions, in
re q u i red . Ea c h d i vi s i on b e g ins
called a division header.

PAGE 24

the Identification, Environment,
that order. All divisions are
with a group of reserved words

THE COPY STATEMENT

from
from
the
it

Th• COPY statement provides the facility for copying text
user-specified files into the source progr•m. Text is copied
the file without change. The effect of the interpr~tation of
COPY statement is to insert text into the source program, where
will be treated by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
tee hn i q_ues.

FORMAT

COPY text-name.

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

Text-name is the external identification of the file containing
the text to be copied. Its format conforms to the rules for
filename (or pathname) construction of the host operating system.
If the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric literal and
enclosed in q_uotation marks.

A COPY statement may occur in the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statement~ is
logically eq_uivalent to processing all COPY statements prior to
the processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged.

Debugging
statement
statement
specified

lines are permitted within library
is specified on a debugging line,
will be processed only if the debug

in the compiler invocation options.

PAGE 25

text.
then

If a COPY
the COPY

option has been

The text produced as a result of -p·rocessing a COPY statement mav]
not contain a COPY statement.

The svntactic correctness of the librarv text cannot be
independently determined. The svntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completelv processed.

Librar1i1 text must conlorm to the rules lor COBOL source fo-rmat.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP. COBOL".

PAGE 26

III

IDENTIFICATION DIVISION

PAGE 27

INTRODUCTION

The Identi9ication Division must be included in every COBOL source
program. This division identi9ies both the source program and the
resultant obJect program. In addition, the useP ma~ include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

CAUTHOR. [comment-entry] ... l

t iNSTALLATiuN. i: t:ommwn1.-1mtr·"::; ... ::;

COATE-WRITTEN. [comment-entry] ... l

[SECURITY. [comment-entry] ... J

PROGRAM IDENTIFICATION

The Identi9ication Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers - identify the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs
are optional and may be included at the user's choice, in the
order of presentation shown.

PAGE 28

l

The PROQRAM-1D Paragraph

Th• PROQRAM-ID paragraph, containing the progT'am-name, ··identifies
the source program, the obJect program, and all listings
pertaining to a particular program. A program-name is a
user-defined word made up of only those characters from the word
set.

A program-name cannot exceed 8 characters in length, and must
contain at least one alphabetic character located in any position
within the program-name. Each p-rogram-name must be uniq_ue.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY pa-rag-raphs
are optional. The prog-ramme-r may use these parag-raphs to document
information pertaining to the para~ra~h header_

The comment-entry may be any combination of characters f-rom the
compute-r's characte-r set. The continuation of the comment-entry by
the use of the hyphen in the indicator a-rea is not permitted;
however, the comment-entry may be contained on one or more lines.

PAOE 29

IV

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration ol
the compiling computer (source computer> and the computer on which
the obJect program is run CobJect computer). It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL sourte
program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name.

[SPECIAL-NAMES. special-names-entryJ.

[INPUT-OUTPUT.SECTION.

FILE-CONTROL. {file-control-entry}

CI-0-CONTROL. input-output-control-entryll.

PAGE 31

CONFIGURATION SECTION

Th• Configuration Section deals-with the characteristics of the
source computer and the obJect computer. This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph, which
configuration on which the obJect
compiler is to be run

describes the computer
program produced by the

the SPECIAL-NAMES paragraph, which relates names used by the
compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer-name.

Computer-name is a user-defined word and is onlu commentary.

PAGE 32

l

Thtt OBJECT-COMPUTER PaT'agT'aph

Th• OBJECT-COMPUTER parag-raph identilies the .compute-r on which the
program is to be executed.

FORMAT

OBJECT-COMPUTER. computer-name

C,MEMORY SIZE integel" <WORDS }l

<CHARACTERS>

<MODULES >

C,PROGRAM COLLATING SEQUENCE IS alphabet-name].

Compute-r-name is a use-r-defined word and is only commenta-ry.

The MEMORY SIZE definition is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the prog-ram
collating s•~uence to be used in determining the truth value of
any nonnumeric comparisons. The Prag-ram Collating Sequence clause
is treated as commentary; the collating sequence is always ASCII.

PAGE 33

The SPECIAL-NAMES Paragraph

Th• SPECIAL-NAMES paragraph relates names used btit the compiler to
user-names in the source program.

[SPECIAL-NAMES. C, switc·h-name

<ON STATUS IS cond-name-1 C,OFF STATUS IS cond-name-2l}l ...

(OFF STATUS IS cond-name-2 C,ON STATUS IS cond-name-1 J}

[,alphabet-name IS <STANDARD-1}l ...

<NATIVE >

t,DECIMAL-POINT IS COMMAJ . l

Switch-name mav be SWITCH-1, ... , SWITCH-8.

At least one condition-name must be associated with each
switch-name given. The status of the switch is specified bv
condition-names and interrogated by testing the condition-names.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating seq_uence. The
alphabet-name definition is treated as commentary; the collating
se~uence is always ASCII.

PAGE 34

]

The literal which appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters:

digits O through 9;

alphabetic characters A, B, C, D, L, P, R~ S, V, X, Z, or the
space;

special characters '*', , +,'
, .. ,, '/', '='

, ,
I I

I I
I

, . ,
I I

, (/ J ,) , .
If this clause is not present, only the currency sign($) is used
in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function ol comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

PAGE 35

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and exteT"nal media
Te~uiTed by an obJect pTogram and provides infoTmation ,-e~uired
fo,- tTansmission and han~ling of data during execution of the
obJect program. This section is divided into two paragraphs:

the FILE-CONTROL paragraph which names and associates the
files with external media.

the I-0-CONTROL paragraph which defines special control
techni~ues to be used in the obJect pT"ogram.

FORMAT

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

<file-control-entry>

CI-0-CONTROL.

I-0-control-entryll

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file
specification of other file-related info,-mation.

FORMAT

FILE-CONTROL. {file-control-ent,-y> ...

and allows

. The content of the file-control-entry is dependent upon the
organization of the file named.

PAQE 36

Th• Sequential File Control Entrv

FORMAT

SELECT fil•-name

ASSION TO device-tvpe, <"exte-rnal-file-name">
----- (data-name-1 >

C,OROANIZATION IS SEQUENTIAL]

[.ACCESS MODE IS SEQUENTIAL]

C;FILE STATUS IS data-name-2l.

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause mav appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entrv must have a file description
entrv in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file-name to a storage medium.

Device-type must
OUTPUT, PRINT, o-r
pe-rformed.

External-file-name

be one of the device names INPUT, INPUT-OUTPUT,
RANDOM according to the operations to be

specifies the file access name. It can be. from
one to thirty characters in length and must be enclosed in
quotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any se~uence of
characters supported by the operating system for file access
names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be ~ualified.

PAGE 37

The ORQANIZATION clause specifies the logical structure of a file.
Th• fil• organization is established at the time a file is created
and cannot subse~uently be changed.

Records in ~he file
file organization.
predecessor-successor
execution of WRITE
•xtended.

are accessed in the sequence dictated by
This sequence is specified

record relationships established by
statements when the file is created

the
b \t

the
01"

When the ORQANIZATION clause is not specified, ORGANIZATION IS
SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in 111hich records are
read or 111ri tten.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is sneci#ietf. a value will he mnv,ad hu . ,
the operating system into the data item specified by data-name-2
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name-2 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section. Data-name-2 mav be ~ualified.

PAGE 38

The Relative File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDON, <"external-file-name"}
------ ------ <data-name-1 >

10RQANIZATION IS RELATIVE

[;ACCESS NODE IS { SEQUENTIAL [,RELATIVE KEY IS data-name-2l>J

<<RANDOM}

<<DYNAMIC>

[;FILE STATUS IS data-name-31.

,RELATIVE KEY IS data-name-2 >

>

The SELECT clause must be specified first in the file control
entrv. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Divison must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file &ccess name and must be
enclosed in ~uotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be ~ualified.

PAGE 39

The ORGANIZATION IS RELATIVE clause specifies the
structure of a file. The file organization is established
time a file is created and cannot subsequently be changed.

logical
at the

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record's logical ordinal position in the
file. The first logical record has a relative record number of one
(1), and subsequent logical records have relative record numbers
oft 2, 3, 4, ... n.

The ACCESS MODE clause specifies the order in 111hich ,T"eco-rds are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the se~uence dictated by the file organization. This
sequence is the orde-r of ascending relative record numbers of
existing records in the file.

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEV ·data
i~em inaicates ~ne record to be accessea.

If a -relative file is to be referenced by a START statement, the
RELATIVE KEV phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

Data-name-2 must
associated with
data-name-2 must
may be qualified.

not
that

be

be defined in a record description entry
file-name. The data item referenced by
defined as an unsigned integer. Data-name-2

1, the ACCESS MODE clause is not specified. ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will
the operating system into the data item specified by
after the execution of every statement that references
either explicitly or implicitly. This value indicates
of execution of the statement.

be moved by
data-name-3
that file

that status

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

The Indexed File ContTol Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
<data-name-1 >

CaORGANIZATION IS INDEXED

(;ACCESS MODE IS {SEGUENTIAL>J

<RANDOM >

<DYNAMIC >

. . -u a 1-a-ndme-c::

[; ALTERNATE RECORD KEY IS data-name-3 (WITH DUPLICATESJJ ...

[;FILE STATUS IS data-name-4J.

The SELECT clause must be specified fil'st in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
refeTenced by file-name to a storage medium.

External-Tile-name specifies the file access name and must be
enclosed in ~uotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system ,or file access names.

PAGE 41

Data-name-1 must be defined in the Data Division as a data item of
categorv alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

The ORQANIZATION IS INDEXED clause specifies the logical structure
ol a file. The file organization is established at the time a file
is created and cannot subsequently be changed.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEGUENTIAL,
accessed in the sequence dictated by the
indexed files this sequence is the order
values within a given key of reference.

records in the file are
file ~rganization. For
of ascending record key

If the ACCESS MODE IS RANDOM, the value of the RECORD. KEY data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file mav be
accessed sequentially and/or randomly.

If the ACCESS MOOE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key
provides an alternate access path to records in an indexed file.

The data description of data-name-2 and data-name-3 as well as
their relative locations within a record must be the same as that
used when the file was created. The number of alternate keys for
the file must also be the same as that used when the file was
created.

The data items referenced by data-name-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file-name.

Neither data-name-2 nor data-name-3 can describe an item whose
size is variable.

PAGE 42

Data-name-3 cannot reference an item whose leftmost characte~
position corresponds to the leftmost character position of an item
referenced by data-name-2 or by any other data-name-3 associated
with this file.

Data-name-2 and data-name-3 may be qualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of
the records in the file. If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among any of the records in the file.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of tha statement.

Oata-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 43

Th• 1-0 CONTROL Pa-r.g'l'aph

The I-0 CONTROL paTagraph specifies th• memoT"tJ area which is to be
shared by different files.

FORMAT

I-0-CONTROL.

[1 SAME AREA FOR file-name-1 C, ,11e-name-2l •.. l

The I-0-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to use
the same memorv area during pl'ocessing. The a-rea being shared
includes all storaae aT"ea assigned ta th• lil&~ ~p~cjfJ~d;
therefore, it is no~-valid to have more than one of the files open_
at the same time.

Hore than one SAME clause mav be included in a pt'ogt'am; however, a
file-name must not appea-r in more than one SAME AREA clause.

The files refe-renced in the SAME AREA clause need not all have the
same organization o-r access.

PAQE 44

l

V

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the obJect program is to
accept as input, to manipulate, to create, or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and
internal memory of the computer
aT'eas.

enters or leaves the
from a specified area or

That which is developed internally
intermediate or working storage, or
format for output reporting purposes.

Constants which are defined by the user.

and
placed

placed into
into specific

The Data Division, which is one of the required divisions in a
program, is subdivided into three sections:

The FILE SECTION defines the structur• o# da+.A ,;)~~ Each
file is defined by a file description entry and one or more
recoT'd descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external data
files but are developed and processed internally. It also
describes data items whose values are assigned in the source
program and do not change during the execution of the obJect
program.

The LINKAGE SECTION in a program is meaningful if and only if
the obJect program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be referred to
in both the calling and the called program. No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at obJect
time by e~uating the reference in the called program to the
location used in the calling program. In the case of
index-names, no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices.

PAGE 46

l

D•t• items defined in the Linkage Section of the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
~SINQ phrase of the Procedure Division header or are
subordinate to such operands, and th• obJect program is under
the control of a CALL statement that specifies a USING phrase.

FORMAT

DATA DIVISION.

[FILE SECTION.

[file-description-entry
Crecord-description-entryJ ... J ... l

CWORKINQ-STORAQE SECTION.

[77-level-description-entryl ... l
[record-description-entry l

CLINKAOE SECTION.

[77-level-description-entryJ ... ll
[record-description-entry l

PAQE 47

FILE SECTION

Th• File Section header is followed by a file d•scription entry
consisting o, a level indicator CFO>, a ,ile-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label
records, the value of label items, and the names of the data
records which comprise the file. The entry itself is terminated by
• period.

In • COBOL program the file description entrv CFD> represents the
highest level or organization in the File Section.

FORMAT

FILE SECTION.

[fi!e-descripti~~-~~tr~
[record-description-entry] ... l ...

PAGE 48

l

Th• File Description Entrv

Th• File Description furnishes information concerning the physical
structure, identification, and record name pertaining to a given
file.

FORMAT

FD file-name

C;BLOCK CONTAINS Cinteger-1 TOl integer-2 <RECORDS }J

<CHARACTERS}

[;RECORD CONTAINS Cinteger-3 TOl integer-4 CHARACTERS]

;LABEL <RECORD IS } <STANDARD}

<RECORDS ARE} <OMITTED>

[;VALUE OF LABEL IS Cliteral-1JJ

[;DATA <RECORD IS >

<RECORDS ARE>

data-name-1 C1data-name-2l ... l.

The level indicator FD ,identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional in many
cases1 and their order of appearance is not significant.

One or more record description entries must follow the file
description entry.

A file description entry must end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT

BLOCK CONTAINS Cinteger-1 TOl integer-2 <RECORDS }

{CHARACTERS}

This clause is re~uired except when:

A physical record contains only one complete logical record.

The device assigned to the file has only one physical record
size.

The device assigned to the file has a standard record size,
although the device may have more than one physical record
size. In this case, the absence of this clause denotes the
standard physical record size.

The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the
RECORDS phrase must not be used:

In mass storage files where logical records may extend across
physical records.

The physical record contains padding.

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the phy!ical record size is
specified in terms of the number of character positions required
to store the physical record, regardless of the types of
characters used to represent the items within the physical record.

If only integer-2 is shown, it represents the exact size of the
physical record. If integer-1 and integer-2 are shown, they refer
to the minimum and maximum size of the physical record,
respectively.

PAGE 50

l

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data records.

FORMAT

RECORD CONTAINS [integer-1 TOJ integer-2 CHARACTERS

The size of each data record is completely defined with the record
description entry, therefore this clause is never required. When
present, however, the following notes apply:

Integer-2 mav not be used by itself unless all the data
records in the file have the same size. In this case integer-2
represents the exact number of characters in the data record.

If integer-1 and integer-2 are both shown. ~hP~ ~P~P~ t~ t~e
minimum number of characters in the smallest size data record
and the maximum number of characters in th• largest size data
record, respectively.

The size is specified in terms of the number of character
positions required to store the logical record, regardless of
the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum
of the number of characters in all fixed length elementary
items plus any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

PAGE 51

Th• LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are present.

FORMAT

LABEL <RECORD IS } <STANDARD}

<RECORDS ARE> <OMITTED>

This clause is re~uired in every file description entry.

STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
system specification. STANDARD must be specified for files
assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause particularizes the description of an item in
the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-1

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in the
LABEL RECORDS clause.

PAGE 52

l

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
of data records with their associated file.

FORMAT

DATA <RECORD IS)

<RECORDS ARE}

data-name-1 [,data-name-2J ...

Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same name,
associated with them.

The presence of more than one data-name indicates that the file

of differing sizes, different formats, etc.
they are listed is not significant.

The order in
may o e

which

Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file.

PAGE 53

WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header,
followed by data description entries for 77 level description
entries and/or record description entries.

The data-name of a 01-level data description entry in
Working-Storage Section must be unique since it cannot
~ualified. Subordinate data-names need not be unique if they
be made unique by qualification.

FORMAT

WORKING-STORAGE SECTION.

(77-level-description~entryJ
Crecord-d~scription-entry l

LINKAGE SECTION

the
be

can

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must
be unique within the called program since it cannot be qualified.

FORMAT

LINKAGE SECTION.

[77-level-description-entryl
(record-description-entry l

PAGE 54

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the characteristics of a particular record.
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as re~uired.

FORMAT

(data-description-entry}

Level-Numbers

The first data description of a record must have a level~number of
01 or 1, and must start in area A of a source line.

Each data description entry can be subdivided into multiple data
description entries, each having the same level-number; which must
be greater than the level-number of the subdivided entry, but less
than 50. Level-numbers do not necessarily have to be successive.
Thus, a record is a hierarchy of data description entries.

Elementary Items

Any data description entry which is not further subdivided is
called an elementary item. A record itself may be an elementary
item, consisting of a single level 01 data description entry. A
subdivided data description entry with its subdivisions is called
a group and is non-elementary. Therefore, a group includes all
group and elementary items following it until a level-number less
than or e~ual to the level-number of that group is encountered.

Note
only
they
must
both.

that certain clauses of the data description entry may occur
in elementary items. They may not occur in 01-level entry as
may affect the subdivisions of that entry. An elementary item

have either a PICTURE clause or INDEX usage; it may not have

PAGE 55

77 LEVEL DESCRIPTION ENTRY

In the Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries which
are not subdivisions of other items, and are not themselves
subdivided. These data description entries specify noncontiguous
data items. Such a data description entry is elementary.

A 77 level description entry must contain a data name and either
the PICTURE clause or the USAGE IS INDEX clause, but cannot
contain an OCCURS clause. Other clauses are optional and can be
used to complete the description of the item if nec~ssary.

FORMAT

data-description-entry

PAGE 56

)

,,·,

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number {data-name-1>
<FILLER >

[;REDEFINES data-name-21

[;(PICTURE> IS character-string]

<PIC >

[;[USAGE ISl <COMPUTATIONAL >

<COMP }

<COMPUTATIONAL-1>

<COMP-1 >

<COMPUTATIONAL-3>

<COMP-3

<DISPLAY

<INDEX

>

>
>]

[;[SIGN ISJ <TRAILING> [SEPARATE CHARACTERJl

[;{OCCURS {integer-1 TIMES >
------ {integer-1 TO integer-2 TIMES-DEPENDING ON data-name-3}

[INDEXED BY index-name-1 C, index-name-21 ... JJ

[;(SYNCHRONIZED> [LEFT l

<SYNC > CRIGHTJl

PAGE 57

[;(JUSTIFIED> RIGHT]

<JUST >

[;BLANK WHEN ZEROl

[;VALUE IS literal]

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].

{THRU >

FORMAT 3

88 condition-name; {VALUE IS > literal-1 [{THROUGH} literal-2J

<VALUES ARE}

C, literal-3 C{THROUGH} literal-4JJ

<THRU >

<THRU }

The clauses mag be written in an~ order with two exceptions:

the data-name-1 or FILLER clause must immediately follow the
level-number;

the REDEFINES clause, when used, must immediately follow the
data-name-1 clause.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

The words THRU and THROUGH are e~uivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except for an elementary data item.

PAGE 58

l

Format 3 is used for each condition-name. Each condition-name
re4uires a separate entry with level-number 88. Format 3 contains
the name of the condition and the value, values, or range of
values associated with the condition-name. The con~ition-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated. A condition-name can be associated with any data
description entry which contains a level-number except the
following:

Another condition-name.

A group containing items
JUSTIFIED, SYNCHRONIZED or
DISPLAY>.

An index data item.

A 1 eve 1 66 it em.

with
USAGE

descriptions
(other than

including
USAGE IS

Each data description entry must end with a period separator.

PAGE 59

Th• Level-Number

The level-number shows
t"ecord. In addition,
sto-rage items, linkage
clause.

FORMAT

level-number

the hierarchy oF data within a logical
it is used to identify entries for working
items, condition-names and the RENAMES

A level-number is re~uired as the first element in each data
description entry.

Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49, 66 or 88.

D.t. ~cSCi'iiitiu,, ciit,ies in the ;.:.:;.~iiiy--::'.:twi"a;c :'.::ccti.:;n .ni!
Linkage Section must have level-numbers with the values 01 through
49, 66, 77 or 88.

The level-number 01 identifies the first entry in each record
description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous working
storage data items and noncontiguous linkage data items.

Level-number 88 is assigned to identify condition-names associated
with a conditional variable.

Multiple level 01 entries subordinate to any given level indicator
FD, represent implicit redefinitions of the same area.

PAGE 60

l

The Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that cannot be referred to explicity.

FORMAT

{data-name>
<FILLER J-

A data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item in a
record. Under no circumstances can a FILLER item be referred to
explicitly. However, the key word FILLER may be used as a
conciitionai varia~ie oecause such use ooes not re,u1re exp11c1t
reference to the FILLER item, but to its value.

The key word FILLER may not be used in data description entries
with a 1, 01, 77, or 88 level-number.

PAGE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

FORMAT

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are shown in
the above format to improve clarity. Level-number and
data-name-1 are not part of the REDEFINES clause.

The REDEFINES clause,
da ta-name-1.

when specified. must immediately follow

The level-numbers of data-name-1 and data-name-2 must be identical
but must not be 66 or 88.

This clause must not be used in level 01 entries in the File
Section.

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subordinate to an entry which
contains a REDEFINES clause. The data description entry for
data-name-2 cannot contain an OCCURS clause. However, data-name-2
may be subordinate to an item whose data description entry
contains an OCCURS clause. In this case, the reference to
data-name-2 in the REDEFINES clause may not be subscripted or
indexed. Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS
clause.

No entry having a level-number numerically lower than tha
level-number of data-name-2 and data-name-1 may occur between the
data description entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than
specify the same number of character positions that
referenced by data-name-2 contains. It is important
that the REDEFINES clause specifies the redefinition
area, not of the data items occupying the area.

PAGE 62

01, it must
the data item

to observe
of a storage

l

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entru that originally
defined the area.

The entries giving the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries.

Multiple level 01 entries subordinate to any given level indicator
r•present implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing re~uirements of an elementary item.

FORNAT

<PICTURE> IS character-string

<PIC >

A PICTURE clause can be specified only at the elementary item
level.

A character-string consists of certain allowable
characters in the COBOL character set used
allowable combinations determine the categor~ of
item.

combinations of
as symbols. The

t:h• P1PmPnt;::l1'1J

The maximum number of characters allowed in the character-string
is 30.

The PICTURE clause must be specified for every elementary item

)

except an index data item, in which case use of this clause is ,
prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause:

alphabetic
numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the symbols 'A',
and/or 'B '.

Its contents when represented in standard data format must be
any combination of the twenty-six (26) letters of the Roman
alphabet and the space from the COBOL character set.

PAGE 64

To d•fin• an item as numeric:

Its PICTURE character-string can only contain the symbols '9',
'P', '9', and 'V'. The number of digit positions that can be
described blJ the PICTURE character-string must range from 1 to
1B inclusive; and

If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9's if signed, the item
malJ also contain a '+', '-', or other representation of an
operational sign.

To define an item as alphanumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'X', '9', and the item is
treated as if the character-string contained all X's. A
PICTURE character-string which contains all A's or all 9's
does not define an alphanumeric item; and

lts contents, wnen represented in standard data format, are
allowable characters in the computer's character set.

To define an item as alphanumeric edited:

Its PICTURE character-string is
combinations of the following symbols:
'0', and '/' <stroke>;

restricted
'A', 'X',

to certain
'9', 'B',

The character-string must contain at least one 'B' and at
least one 'X' or at least one '0' <zero> and at least one 'X'
o~ at least one '/' <stroke) and at least one 'X'; or

The character-string must contain at least one '0' (zero) and
at least one 'A' -or at least one '/' <stroke) and at least one
'A'J and

The contents when represented in standard data format are
allowable characters in the computer's character set.

PAGE 65

To define an item as numeric edited:

It• PICTURE character-string is restricted to certain)
combinations of the following symbols: 'B', '/' <stroke), 'P',
'V', 'Z', '0', '9', ', ', '. ', '*'• '-', "+', 'CR', 'DB', and
the currencv symbol. The allowable combinations a-re dete-rmined
from the order of precedence of symbols and the editing rulesJ
and ·

The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive;
and

the character-string
< s tr o k e) , ' Z ' , '* ' ,
currencv symbol.

must contain at least one '0',
'+', ', ', '. ', '-', 'CR',

'B,,
'DB',

, I'
or

The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format, must
be one of the numerals.

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols that
represent character positions. An integer which is enclosed in
parentheses following the symbols 'A', ', ', 'X', '9', 'P', 'Z',
'*', 'B', '/' <stroke>, '0', '+', '-', or the curl"encv symbol
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols may appear onlv once in a given
PICTURE: 'S', 'V', '. ', 'CR', and 'DB'.

The functions of the symbols used to describe an elementary item
are explained as follows:

Each 'A'
position
space.

in the character-string represents a character
which can contain only a letter of the alphabet or a

Each 'B' in the character-string represents a character
position into which the space character will be inserted.

PAGE 66

Each 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in the
size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions C18> in
numeric edited items or numeric items. The scaling position
character 'P' can appear only to the left or right as a
continuous string of 'P's within a PICTURE descT"iption; since
the scaling po~ition character ¥P' implies an assumed decimal
point <to the left of 'P's if 'P's are leftmost PICTURE
characters and to the right if 'P's are rightmost PICTUR~
characters), the assumed decimal point symbol 'V' is redundant
as either the leftmost or rightmost character within such a
PICTURE description. The character 'P' and the insertion
character ' ' (period) cannot both occur in the same PICTURE
character-s.tring. If. in any operation involving conversion of
data from one form of internal representation to another, the
data item bein~ converted is described with the PICTURE
character 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size of the data
item is considered to include the digit positions so
described.

The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the
position of an operational sign; it must be written as the
leftmost character in the PICTURE. The 'S-' is counted in
determining the size {in terms of standard data format
characters> of elementary items having DISPLAY or
COMPUTATIONAL usage.

The 'V' is used in a character-string to indicate the location
of the assumed decimal point and may only appear once in a
character-string. The 'V' does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the rightmost symbol in the string the 'V' is
redundant.

Each 'X' in the character-string is used to represent a
character position which contains any allowable character from
the computer's character set.

Each 'Z' in a character-string may only be used to represent
the leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character position is zero. Each 'Z' is counted in the size of
the item.

PAGE 67

Each· '9' in the character-string repre~ents a
position which contains a numeral and is counted in
of th• item.

character
the size

Each '0' <~ero) in the charact~r-string represents a character
position into which the numeral zero will be inserted. The '0'
is counted in the size of the item.

Each '/' < st,-oke) in the chal'acter-st,-ing represents a
character position into which the stroke character will be
inserted. The '/' (stroke) is counted in the size of the item.

'
Each ',' <comma> in the character-string
character position into which the character
inserted. This character position is counted
the item. The insertion character ', ' must not
character in the PICTURE character-string.

represents a
',' will be

in the size of
be the last

When the character ' ' (period> appears in the
character-string it is an editing svmbol which represents the
decimal point for alignment purposes and in addition,
represents a character position into which the character ' '
will· be inserted. The character '.' is counted in the size of
the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period appl1;1 to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character ' ' must not be the last
character in the PICTURE character-string.

+, -, CR, DB. These symbols are used as editing sign control
symbols. When used, they represent the character position into
which the editing sign control symbol will be placed. The
symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining
the size of the data item.

Each '*' (asterisk) in the character-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero. Each '*'
is counted in the size of the item.

The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

PAGE 68

J

The curr•ncv svmbol in the character-string represents a
character position into which a currencv svmbol is to be
placed. The cul"-renci., symbol in a characte-,.-strtng is
represented bv either the cur-,.encv sign or by the ·single
cha1"acte-,. specified in the CURRENCY SIGN IS clause in the
SPECIAL-NAMES pa1"agraph. The currencv svmbol is counted in the
size of the item.

Th•r• a1"e two general methods of performing editing in the PICTURE
clause, eithe1" by insertion or by suppression and replacement.
There a-,.e four types of insertion editing available:

Simple insertion
Special insertion
Fixed insertion
Floating insel"tion

There are two types of suppression and replacement editing:

Zero suppl"ession and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be performed
upon a given category:

I CATEGORY TYPE OF EDITING
1~---1
I Alphabetic Simple insertion 'B' only
1--1
INumeric None
1--·
I Alphanumeric None
:--
IAlphanumeric Simple insertion '0', 'B',
&Edited and '/' <stroke)
I---
&Numeric
IEdited

All, subJect to T'Ules below

Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one
type of replacement may be used with zero suppression in a PICTURE
clause.

PAGE 69

Simpl• Insertion Editing

Th• ',' <comma>, 'B' (space), '0', <zero).t and '/' (stro~e>
used as the insertion characters. The insertion characters
counted in the size of the item and represent the position in
item into which the character will be inserted.

Sp•cial Insertion Editing

are
are
the

The ' ' (period) is used as the insertion character. In addition
to being an insertion character it also represents the decimal
point for alignment purposes. The insertion character used for the
actual decimal point is counted in the size of the item. The use
of the assumed decimal point, represented by the symbol 'V' and
the actual decimal point, represented by the insertion character,
in the same PICTURE character-string is disallowed. The result of
sp•ci•l in~~r~i~n ~~itin~ is t~e =P~~=~~~=: :~ t~= i~::Ttio~
character in the item in the• samlt posit'ion as shown in th·e
character-string.

Fixed Insertion Editing

The currency symbol and the editing si9n control symbols, '+',
'-', 'CR', 'DB', are the insertion characters. Only one currency
symbol and only one of the editing sign control s~mbols can be
used in a given PICTURE character-string. When the symbols 'CR' or
'DB' are used they represent two character positions in
determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item.

The symbol '+' or '-', when used, must be either the leftmost or
rightmost character position to be counted in the size of the
item.

The currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by
either a '+' or a ,_, symbol.

Fixed insertion editing results in the
occupying the same character position in the
occupied in the PICTURE character-string.

PAGE 70

insertion character
edited item as it

)

Editing sign control symbols produce the following results
depending upon the value of the data item:

EDITING SYMBOL IN RESULT
I PICTURE :--------------------------------:
t CHARACTER-STRING DATA ITEM DATA ITEM

l POSITIVE OR ZERO I NEGATIVE 1--------------------: ______ ""'.""' _____________ : -------------:
+

CR
DB

Floating Insertion Editing

+
space

2 spaces
2 spaces

CR
DB

Tile currency symbol ana editing sign control symoois, :..,.: or :_:,
are the Floating insertion characters and as such are mutually
exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the floating
insertion characters. This string of floating insertion characters
ma~ contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the right of this string.
These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents
the leftmost limit of the floating symbol in the data item. The
rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data items.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data may replace all the characters at or to
the right of this limit.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the decimal point by the insertion character. The other wag is
to represent all or the numeric character positions in the PICTURE
character-string by the insertion character,

PAGE 71

If the insertion ch•racters are onlv to the left of the decimal
point in the PICTURE character-string, the 'result is that a single)
floating insertion character will be placed into the character
position immediatelv preceding either the decimal point or the
first nonzero digit in the data represented bv the insertion
svmbol string, whichever is farther to the left in the PICTURE
character-string. The char~cter positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the PICTURE character-string
are represented bv the insertion character, the result depends
upon the value of the data. If the value is ze"ra the entire data
item will contain spaces. If the value is not zero, the result is
the same as when the insertion character is onlv to the left of
the decimal poin~.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of
non-floating insertion characte~s being edited into the receiving
data item, plus one for the floating insertion character. ·

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions
is indicated by the use of the alphabetic character 'Z' or the
character '*' (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If 'Z' is used the replacement
character will be the space and if the asterisk is used. the
replacement character will be '*'·

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any or all
of the leading numeric character positions to the left of the
decimal point bg suppression svmbols. The other wag is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol·
in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

PAGE 72

If all numeric character positions in the PICTURE character-string
are represented by suppression svmbols and the value of the data
is not zero the result is the same as if the suppression
characters were only to the left of the decimal point. If the
value is zero and the suppression symbol is 'Z', the entire data
item will be spaces. If the value is zero and the suppression
s14mbol is '*', the data item will be all '*' except for the actual
dee imal point.

The ~i:,mbols '+', '-', '*', 'Z', and the currencv symbol, when used
•• floating replacement characters, are mutually exclusive within
a given character-string.

The picture precedence chart shows the order of precedence when
using characters as symbols in a character-string. An 'X' at an
intersection indicates that the symbol<s> at the top of the column
may precede, in a given character-string, the symbol(s) at the
le,t of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol is indicated
by the symbol 'cs'.

At ! ~:!.,;t ~~!" r--"'
least two of
PICTURE string.

cumhnlc
- ~,A.""• •- ,.L ••

the StJfflbols
, A_ , :

, +,'
, X,. 'Z'~ ,q,~ 1'T' '*'• nT' At

or 'cs' must be present in a

Nonfloating insertion symbols '+' and '-', floating insertion
svmbols 'Z', '*'• '+', '-', and 'cs', and other symbol 'P' appear
twice in the PICTURE character precedence chart. The leftmost
column and uppermost row for each symbol represents its use to the
left of the decimal point position. The second appearance of the
symbol in the chart represents its use to the right of the decimal
point position.

PAGE 73

--~-----------------~---~-
l\1st
: \Sum-•
12nd\bol
:svm-\
I bol \

Non-Floating
Insertion Svmbols

Floating
Insertion svmbols

Other
Symbols

--------------------~----1--------------------:-----------:
BIOi/i 'I. l{+}l{+}l{CR>ICSl{Z}l<Z>l{+}l{+}ICSICS'91AISIVIPIPI

t I I I 1<->l<->l<DB>I l<*>l<*>l<->l<->I IXI I I I I
:------- -------------------------:--------------------- -----------1

B XIXIXIXIXI X I I XIX l X l XI X I XI X XlXl lXI IXI
----- -------------------------:--------------------- -----------1

I O XIXIXIXIXI X : I XI X IX IX I X t XI X XIXI IXI IX'
IN-----•-------------------------:--------------~~----------------
10 I xrx:x:x1x: X I I XIX IX IX IX I XI X x:x: IXI IX
:-N -----
IF
IL
10
IA-----
ITI + -
It-----
NI + -
QI-----

-------------------------:-----~-------------- -----------
XIXIXIXIXI X l I XIX IX I XIX I Xl X XI : IXI IX

-------------------------1---------~----------- -----------
XIXIXIXI I X I t I XI X t : X t I XI XI I I I I

-------------------------,------------------~-
I I I I I I I I I I I I
11111 I I I I It I I I I I I

-------------------------·--------------------
XIXIXIXIXl J I X X l X I I XI X XI I IXIXIX

JC~ DB 1 XiXiXiXlx: IX X I X I I XI X XI I IXIXIX
1----- ------------------------- ---------------------·-----------
' CS I I I I I . X I I I I I I

-1------
I Z * XIXIXIXI I X I : X
1-----

FI Z * XIXIXIXIXI X I I X
LI-----

X I

X I X I

~----------
: I I I I

I I I I

I J IXI IX.

-----------1
01 + - XIXIXIXI I I X I X : l I I I I I I I

I I I I I I

Al-----,------------------------- --------------------- -----------:
TI + - XIXIXIXIXI I X I X I X I I I IXI IXI

II------------------------------ ---------------------.-----------: INI cs xrx:x:x: : x: I I XI I I I : I I

o:----- -------------------------:-------------------- -----------: : cs
-:-----

: 9
1-----
1 A X

o:-----
TI S
HI----
EI V
RJ-----

p
1-----

p

XIXIXIXIXI X I I XIX

-------------------------1---------------------
XIXIXlXIXI X I I XI X I I X I I XI
-------------------------1---------------------
XIXIXI I I

-------------------------:-------------------
I I I I I

I I IXI IXI
-----------:
XIXIXIXI IXI

XIXI I I I

I I I I I
I I I I I I

-------------------------:---------------------1-----------
XIXIXIXI I X I I XI X : IX I I XI IXI IXI IXI

-------------------------:---------------------:-----------
XIXIXIXI I X I : XI X I I X I I XI IXI IXI IXl

-------------------------1---------------------:-----------
: : I I I X I l XI f I I 1x:x: :x

PICTURE Character Precedence Chart

PAQE 74

]

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

CUSAQE ISJ {COMPUTATIONAL }

{COMP }

{COMPUTATIONAL-!}

<COMP-1 }

{COMPUTATIONAL-3}

<COMP-3

<DISPLAY

<INDEX

}

}

>

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the Procedure Division may restrict the USAGE clause
of the operands referenced.

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-!, COMPUTATIONAL-3) item represents
a value to be used in computations and must be numeric. If a group
is described as COMPUTATIONAL, then the elementary items in the
group are COMPUTATIONAL. The group itselr is not COMPUTATIONAL
(cannot be used in computations.>

PAGE 75

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal 00-09>. If an 'S' appears in the
PICTURE character-string, a trailing byte contains the sign with
> 2B being generated for positiv~ and> 2D being generat~d for
negative. COMPUTATIONAL items will be treated as negative if the
sign character is > 2D; otherwise they will be considered
positive.

The format of a COMPUTATIONAL-1 item (abbreviated COMP-1) is 16
bit two's complement signed binary, independent of the number of
nines or appearance of 'S' in the PIC.TURE character-string. The
number of nines is significant when the value is converted to
decimal during data manipulation. The value of a COMPUTATIONAL-1
item ranges between -32768 and 32767.

The format of a COMPUTATIONAL-3 item is two decimal digits per
character position.

The PICTURE character-string of a COMPUTATIONAL, COMPUTATIONAL-!
or COMPUTATIONAL-3 item can contain only '9's, the operational
sign character 'S', the implied decimal point character 'V', one
~r ~=~~ '~'~. Sin:e ~ COMPUTAT!ONA~-1 i~~~ ~~~t h~ve ?ero scale it
cannot contain any 'P's in its PICTURE character string and if it
has a 'V' in its PICTURE character-string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII. ·'

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table element. If a group
item is described with the USAGE IS INDEX clause the elementary
items in the group are all index data but the group item name
cannot be used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SET
statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items
described ~ith the USAGE IS INDEX clause.

An index data item can be part of a group which is referred to in
a MOVE or input-output statement, in which case no conversion will
tak• place.

The external and internal format of an index data item is the same
as a COMPUTATONAL-1 item .

.PAGE 76

The SIQN Clause

The SIGN clause specifies the position and
representation of the operational sign when it is
describe these properties explicitly.

FORMAT

CSIGN ISl {TRAILING} [SEPARATE CHARACTERJ

the mod~ of
necessary to

The optional SIGN clause, if present, specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SIQN clause applies only to numeric data description
entries whose PICTURE contains the character 'S'.

The operational sign will be presumed to be the trailing character
position of the elementary numeric data item; this character
position is not a digit position.

The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data format
characters>.

The operational signs for positive and negative are the standard
data format characters '+' and '-', respectively.

The numeric data description entries to which the SIGN clause
applies must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

PAGE 77

Th• OCCURS Clause

The OCCURS clause eliminates the need
repeated data items and supplies
application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES

f!or separate entries for
information re~uired for the

CINDEXED BY index--name-1 C,index-name-21 ... l

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

[INDEXED BY index-name-1 C, index-nam@-21 _ .]

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is used,
the data-name which is the subJect of this entry must be either
subscripted or indexed whenever it is referred to in a statement.
Fu1'ther, if the subJect of this entry is the name of a group item,
then all data-names belonging to the group must be subscripted 01'
indexed whenever they are used as operands, except as the obJect
of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description ent1'y
that:

Has an 01, 66, 77, or an 88 level-number.

Describes an item whose size is variable. The size of an item
is variable if the data description of! any subordinate item
contains Format 2 of the OCCURS clause.

Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described.

PAGE 78

The number of occurrences of the subJect entry is defined as
follows:

In Format 1, the value of integer-I represents the exact
number of occurrences.

In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

This format specifies that the subJect of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value
of integer-1 represents the minimum number of occurrences.
This does not imply that the length of the subJect of the
entry is variable, but that the number of occurrences is
variable.

The value of the data item referenced by data-name-1 must
fall within the range integer-1 through integer-2.
Reducing the value of the data item referenced by
data-name-1 makes the contents of data items, whose
occurrence numbers now exceed the value of the data item
-:-~f~;-;;.:;:v.! ~<j .::ata 1101111<:-L 1.111p1·,:1.iii.;1;du:ie.

Where both integer-1 and integer-2 are used, the value ol
integer-1 must be less than the value of integer-2.

The data description of data-name-1 must describe a
positive integer. Data-name-1 may be qualified.

A data description entry
OCCURS clause may only be

that contains Format 2 of the
followed, within that record

description entries which are description, by data
subordinate to it.

When a group item, having subordinate to it an entry
specifies Format 2 of the OCCURS clause, is referenced, only
part of the table area that is specified by the value
data-name-1 will be used in the operation.

that
that

o-F

An INDEXED BY phrase is required if the subJect of this entry, or
an entry subordinate to this entry, is to be referred to by
indexing. The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware, and not being data, cannot be associated with any data
hierarchy.

PAGE 79

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment o, an elementary
item on an even byte boundary.

FORMAT

<SYNCHRONIZED} CLEFT l

<SYNC > CRIQHTJ

This clause specifies that the subJect data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost and rightmost natural
boundaries delimiting this data item. If the number of character
positions required to store this data item is less than the number
of theracter p~~itie~~ between th~~~ ~~t~re! h~u~~eri~~: the
unused character positions (or portions thereof) must not be used
for any other data item. Such unused character positions, however,
aTe included in:

The size of any gToup item<s> to which the elementary item
belongs; and

The character positions redefined when this data item is the
obJect of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the next available even byte. If the data item contains an odd
number of bytes, one trailing byte of FILLER is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to
the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.

This clause may only appear with an elementary item.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character
position of an integral even byte boundary. If the data item
contains an odd number of bytes, a leading byte of FILLER is
implied.

PAGE 80.

Wh•n•v•r a SYNCHRONIZED item is referenced in the source program,
th• original size of the item, as sho~n in the PICTURE clause, is
us•d in determining anv action that depends on size, such as
Justifiction, truncation or overflow.

If the data description
clause and an operational
th• normal operational
it•m is SYNCHRONIZED LEFT

of an item contains the SYNCHRONIZED
sign, the sign of the item appears in
sign position, regardless of ~hether the
or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entrv of a data item that also contains an OCCURS clause, or in a
data description entrv of a data item subordinate to a data
description entrv that contains an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

Anv implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
items.

Records cf = fil; ~~d ind~; -dat~ it~~~ ~~~ ~uL~maLiLall~
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available bvte unless the first
elementarv item is synchronized.

The format on external media of records or groups containing
elementa1'y items described with the SYNCHRONIZED clause includes
anv implied FILLER bqtes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose address is
even, than one implied FILLER bvte is generated. Such
automatically generated FILLER positions are included in:

The size of anv group to which the FILLER item belongs, and

The number of character positions allocated when the group
item of which the FILLER item is a part appears as the obJect
of a REDEFINES clause.

PAGE 81

Th• JUSTIFIED Clause

Th• JUSTIFIED clause specifies nonstandaT'd positioning of data
within a receiving data item.

FORMAT

<JUSTIFIED} RIGHT

{JUST }

When • rece1v1ng data item is described with the JUSTIFIED clause
and the sending data item is laT'ger than the receiving data item,
th• leftmost characteT's are truncated. When the receiving data
item is described with the JUSTIFIED clause and it is laT'geT' than
the sending data item, the data is aligned at the rightmost
cha..-c1cter po1>ii.i011 .i.11 the uc11ic1 .i.i.em wi.i.i, ,:;pac.w-Fill -rc.n- t.tu,
leftmost cha..-acteT' positions.

When the JUSTIFIED claus~ is omitted, the standard rules for
aligning data within an elementarg item applg.

The JUSTIFIED clause cannot be specified for ang data item
described as numeric OT' fol" which editing is specified.

The JUSTIFIED clause can be specified only at the elementary item
level.

JUST is an abbreviation for JUSTIFIED.

PAGE 82

Th• BLANK WHEN ZERO Clause

Th• BLANK WHEN ZERO clause permits the blanking a, an item when
its value is zero.

FORMAT

BLANK WHEN ZERO

Th• BLANK WHEN ZERO clause can be used only ,or an elementary item
whose PICTURE is specified as numeric or numeric edited.

Th• BLANK WHEN ZERO clause cannot appear in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol.

When th• BLANK WHEN ZERO clause is used, the item will contain
nothing but spaces 1, the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric, the category of the item is considered to be numeric
edited.

PAGE 83

The VALUE IS Clause

The VALUE IS clause de,ines the initial value o, working storage
items, and the values associated with a condition-name.

FORMAT 1

VALUE IS literal

FORMAT 2

<VALUE IS } literal-1 [{THROUGH> literal-2l

<VALUES ARE} <THRU }

C, lit • .-el-3 L{THRGUGH} literal-4]l ...

<THRU >

The VALUE clause cannot be stated For any items whose size is
variable.

A signed numeric literal must have associated with it a signe~
numeric PICTURE character-string.

All numeric literals in a VALUE clause of
value which is within the range of values
clause, and must not have a value which
of nonzero digits. Nonnumeric literals in
item must not exceed the size indicated by

The words THRU and THROUGH are equivalent.

an item must have a
indicated by the PICTURE
would re~uire truncation
a VALUE clause of an

the PICTURE clause.

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. The following rules apply:

1. If the categorv of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the value
of a working storage item, the literal is aligned in the data
item according to the standard alignment rules.

PAGE 84

)

2. 1, the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumel'ic literals. The literal is
aligned in the data item as if the data item had been
d•scribed as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data item
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item is presented in an
ad i ted form.

Initialization takes place independent of any BLANK WHEN ZERO or
~USTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1 and
Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is T'f:.>Cluired. The VAUJF
clause and the condition-name itself are the only two clauses
permitted in the entry. The characteristics of a condition-name
are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names.
Wherever the THROUGH (THRU) phrase is used, literal-1 must be less
than literal-2, literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section,
condition-name entries.

the VALUE clause may be used only in

In the Working-Storage Section, the VALUE clause must be used
in condition-name entries. The VALUE clause may also be used
to specify the initial value of any other data item; in which
case the clause causes the item to assume the specified value
at the start of the obJect program. If the VALUE clause is not
used in an item's description, the initial value is undefined.

In the Linkage Section, the VALUE clause may be used only in
condition-name entries.

PAGE 85

The VALUE clause must not be stated in a data description entry
that contains an OCCURS clause, or in an entr~ that is subordinate
to any entry containing a REDEFINES clause. This rule does not
apply to condition-name entries.

Ir the VALUE clause is used in an entr~ at the group level, the
literal must be a figurative constant or a nonnumeric literal, and
the group area is initialized without consideration for the
individual elementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within
this group.

The VALUE clause must not be written for a group containing
with descriptions including JUSTIFIED, SYNCHRONIZED, or
(other than USAGE IS DISPLAY).

PAGE 86

items
USAGE

Th• RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping,
groupings of elementary items.

FORMAT

66 data-name-1;

RENAMES data-name-2 [{THROUGH> data-name-3J.

<THRU }

NOTE: Level-number 66, data-name-1 and the semicolon are shown
in the above format to improve clarity. Level-number and
data-n!!!!!~-! :!'!'~ n~t part o~ t!'!~ RE!'!A~ES cla!.!!:~.

All RENAMES entries referring to data items within a given logical
record must immediately follow the last data description entry of
the associated record description entry.

Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot
be the same data-name. A 66 level entry cannot rename another 66
level entry nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the associated level 01 or FD entries.
Neither data-name-2 nor data-name-3 may have an OCCURS clause in
its data description entry nor be subordinate to an item that has
an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to
the left of the beginning of the area described by data-name-2.
The end of the area described by data-name-3 must be to the right
of the end of the area described by data-name-2. Data-name-3,
therefore, cannot be subordinate to data-name-2.

Data-name-2 and data-name-3 may be qualified.

None of the items within the range, .including data-name-2 and
data-nam~-3, if specified, can be an item whose size is variable
as defined in the OCCURS clause.

PAGE 87

One or more RENAMES entries can be written for a logical record.

When data-name-3 is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 < if
data-name-2 is an elementary item> or the first elementary item in
data-name-2 (if data-name-2 is a group item), and concluding with
data-name-3 (if data-name-3 is an elementarv item> or the last
elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a
group or an elementary item, when data-name-2 is a group item,
data-name-1 is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an elementary item.

The words THRU and THROUGH are e~uivalent.

PACE 88

)

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE Clause) are
grouped into three classes:

•lphabetic
numeric
•lphanumeric

For alphabetic and numeric, the classes and categpries are
svnonvmous.

The alphanumeric class includes the categories of. alphanumeric
edited, numeric edited and alphanumeric <without editing).

Every elementary item except for an index data item belongs to one
of the ciasses ana further to one of the categories. 1ne ciass of·
a group item is treated at obJect time as alphanumeric regardless
of the class of elementary items subordinate to that group item.

The following ~hart depicts the relationship of the class and
categories of data items:

ILEVEL OF ITEM: CLASS CATEGORY
1--------------1----------------:----------------------:
f Alphabetic I Alphabetic I

I 1----------------:----------------------:
I Numeric : Numeric
I Elementary 1----------------:----------------------:
I Alphanumeric Numeric Edited
I Alphanumeric Edited

Alphanumeric
:--------------
INonelementaT'y
I (Group>
I
I

Alphanumeric Alphabetic

PAGE 89

Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Representation of Numeric Items

The value of a numeric item mav be represented in either binarv,
decimal or packed decimal form depending on the USAGE clause
associated with the item. There are two ways of expressing
decimal: DISPLAY and COMPUTATIONAL. Binary is COMPUTATIONAL-1.
Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon the
usage of the numeric item. Items which must be used for input and
output should be of DISPLAY usage to eliminate conversions to
external forms. For efficiencv of arithmetic operations,
COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL~3 should be used.
To reduce conversions and increase efficiency, types· should not be
mixed in operations except where re~uired by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories:

operational signs which are associated with signed numeric
data items, and signed numeric literals to indicate their
algebraic properties; and

editing signs which appear to identify the sign of the item.

For DISPLAY, COMPUTATIONAL, and -COMPUTATIONAL-3, an unsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed items. A
signed numeric item maintains the operational sign as a separate
trailing character.

For COMPUTATIONAL-1 <which is alwavs signed). the operational sign
is maintained as part of the item in two's complement signed
binary form.

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

PAGE 90

,

St•ndaTd Alignment Rules

The standaTd rules of positioning data within an elementarv item
depend on the categor1 of the receiving item:

1, the receiving data item is described as numeric:

a. The data is aligned bv decimal point an-d is moved to the
Teceiving chaTacter positions with zero fill or truncation
on either end as re~uired.

b~ When an assumed decimal point is not explicitlv specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character and is
aligned as in a. above.

If ~he Teceiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal point
with zero-fill or truncation at either end as required within
the receiving character positions of the .data item, except
wheTe editing requirements cause replacement of the leading
Z91'0S.

If the Tece1v1ng data item is alphanumeric Cother than a
numeric edited data item), alphanumeric edited or alphabetic,
the sending data is moved to the receiving character positions
and aligned at the lef-tmost character position in the data
item with space-fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described in the JUSTIFIED clause.

PAGE 91

GUALIFICATION

Ev•rv user-specified name that defines an element in a COBOL
source program must be uni~ue, either because no other name has
the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can
be made uni~ue by mentioning one or more of the higher levels of
the hierarchy. The higher levels are called ~ualifiers and this
process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however,
it mav not be necessary to mention all levels of the hierarchy.
Within the Data Division, all data-names used for qualification
must be associated with a level indicator or a level-number.
Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made
unique through qualification.

In the hierarchy ~f qualification, names associated with a level
indicator are the most significant, then those names associated
with level-number 01, then names associated with level-number 02#
... , 49. The most significant name in the hierarchy must be unique
and cannot be ~ualified.

Gualification is performed by following a data-name, by one or
more phrases composed of a ~ualifier preceded by IN or OF. IN and
OF are logically e~uivalent.

FORMAT 1

<data-name-1> C<OF} data-name-2 l ...

<condition-name> <IN>

FORMAT 2

paragraph-name C<OF> section-name]

<IN>

PAGE 92

)

Th• rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and
within the same hierarchv as the name it qualifi~s.

2. The same name must not appear at two levels in a hierarchy.

3. If a data name is assigned to more than one data item in a
source program, the data-name must be qualified each time it
is referred to in the Procedure, Environment, and Data
Divisions <except in the REDEFINES clause where qualification
is unnecessary and must not be used.>

4. A paragraph-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section.

~ A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need
qualtf1cat1on: if there is more than one combination of
qualifiers that ensures uniqueness, then anv such set can be
used. The complete set of qualifiers for a data-name must not
be the same as anv partial set of ~ualifiers for another
data-name. Qualified data-names may have any number of
qualifiers up to a limit of 49.

PAOE 93

SUBSCRIPTINQ

Subscripts can be used only when reference is made to an
individual element within a list of a table o, like elements that
have not been assigned individual data-names (see The OCCURS
Clause).

The subscript can be represented either by a numeric literal that
is an integer or by a data-name. The data name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data-name, the data-name may be ~ualified but not
subscripted.

The subscript ma1.1 be signed and, ift signed, it must be positive.
The lowest possible subscript value is 1. This value points to the
ftirst element of the table. The next sequential elements of the
table are pointed to blJ subscripts whose values are 2, 3, ... n.
The highest permissible subscript value, in anv particular case,
is the maximum number of occurrences of the item as specified in
ths CCCU~S ~lauac.

The subscript, or set of subscripts, that identifties the table
element is delimited by the balanced pair of separators, left
parenthesis and right parenthesis, following the table element
data-name. The table element data-name appended with a subscript
is called a subscripted data-name or an identifier. When more than
one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization.

FORMAT

{data-name } (subscript-1 Csubsc~ipt-2 C1subsc~ipt-3JJ>
{condition-name}

PAGE 94

)

INDEXING

References can be made to individual elements within a table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXED BY
phrase in the definition of a table. A name given in the INDEXED
BY phrase is known as an index-name and is used to refer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET
statement, or a FORMAT 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of
a subscript. Relative indexing is specified when the index-name is
followed by the operator+ or-, follo~ed by an unsigned integer
numeric literal all delimited by the balanced pair of separators,
left parenthesis and right parenthesis, following the table
element data-name. The occurrence number resulting from relative
indexina is determined bu incrementinq (where the operator+ is
used) or decrementing <when the operator - is used), by the value
of the literal, the occurrence number represented by the value or
the index. When more than one index-name is required, they are
written in the order of successively less inclusive dimensions of
the data organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the
index-name associated with the table element must neither
correspond to a value less than one Cl> nor to a value greater
than the highest permissible occurrence number of an element of
the associated table. This restriction also applies to the value
resultant from relative indexing.

FORMAT

{data-name} C{index-name-1 [{+} literal-2]}
<condition-name> {literal-1 {-} }

C,{index-name-2 [{+} literal-4]>
<literal-3 <-} }

[,{index-name-3 C{+} literal-6J}JJ)
{literal-5 <-} }

PAGE 95

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not
uni~ue in a program, must be followed by a SQntactically correct
combination of qualifiers, subscripts or indices necessary to
ensure uniqueness. The general formats for identifiers are:

FORMAT 1

data-name-1 C<OF> data-name-2] ... C(subscript-1

<IN>

C,subscript-2 C,subscript-3ll)l

FORMAT 2

data-name-1 C{OF> data-name-21

<IN>

C({index-name-1 C{+} literal-21>
{literal-1 <-> >

C,<index-name-2 C<+> literal-41}
<literal-3 <-> >

C,(index-name-3 C<+> literal-6J}JJ)J
{literal-5 <-> >

Restrictions on qualification, subscripting and indexing are:

A data-name must not itself be subscripted nor
that data-name is being used as an index,
qualifier.

indexed when
subscript or

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE IS INDEX clause
permit storage of the values associated with index-names as
data in a form specified by the compiler. Such data items are
called index data items.

Literal-1, literal-3, literal-5 in the above format must be
positive numeric integers. Literal-2, literal-4, literal-6,
must be unsigned numeric integers.

PAQE 96

l

CONDITION-NAME

Each condition-name must be uni~ue, or be made unique through
~ualification and/or indexing, or subscripting.

If qualification i~ used to make a condition-name unique, the
associated conditional variable may be used as the first
qualifier. If q,ualification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that o,
'identifier' except that data-name-1 is replaced by
condition-name-1.

In the general formats, 'condition-name' re,ers to a
condition-name qualified, indexed or subscripted, as necessary.

PAGE 97

TABLE HANDLINO

Tables of data are common components of business data processing
problems. Alt~ough items of data that make up a table could be
described as contiguous data items, there are two reasons why this
approach is not satisfactory. First, from a documentation
standpoint, the underlying homogeneity of the items would not be
readily apparent; and_- second, the problem of making available an
individual element of such a table would be severe when there is a
decision as to which element is to be made available at obJect
time.

Tables composed of contiguous data items ar~ defined in COBOL by
including the OCCURS clause in their data description entries.
This clause specifies that the item is to be repeated as many
times as stated. The item is considered to be a table element and
its name and description apply to each repetition or occurrence.
Since each occurrence of a table element does not have assigned to
it a unique data-name, reference to a desired occurrence may be
made only by spec1fy1ng tne data-name of the table element
together with the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used to
specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table, the programmer uses an OCCURS
clause as part of the data description of the table element, but
the OCCURS clause must not appear in the description of group
items which contain the table element.

Example 1:

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 NAME
03 SSAN

Defining a one-dimensional table within each occurrence of an
element of another one-dimensional table gives rise to a
two-dimensional table. To define a two-dimensional table, then, an
OCCURS clause must appear in the data description of the element
of the table, and in the description of only one g~oup item which
contains that table. In the description of a three-dimensional
table, the OCCURS clause should appear in the data description of
2 nested group items which contain the element. In COBOL, tables
of up to 3 dimensions are permitted.

PAOE 98

l

Example 2 shows a table which has one dimension for
CONTINENT-NAME, two .dimensions for COUNTRY--NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items--10 for CONTINENT-NAME, 500 for COUNTRY-NAME,
50,000 for CITY-NAME, and 50,000 for CITY-POPULATION. Within the
table there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT-NAME there are 50 occurrences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

Example 2:

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE. OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the reference must
indicate which occurrence of the element is intended. For access
to • one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each dimension of the table accessed. In Example 2 then, a
reference to the 4th CONTINENT-NAME would be complete, whereas a
reference to the 4th COUNTRY-NAME would not. To refer to
COUNTRY-NAME, which is an element of a two-dimensional table, the
user must refer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is to
append one or more subscripts to the data-name. A subscript is an
integer whose value specifies the occurrence number of an element.
The subscript can be represented either by a literal which is an
integer or by a data-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the
assumed dee ima 1 po int. In either case, the subscript, enc 1 osed in
parentheses, is written• immediately following the name of the
table element. A table reference must include as many subscripts
as there are dimensions in the table whose element is being
referenced. That is, there must be a·subscript for each OCCURS
clause in the hierarchy containing the data-name, including the
data-name itself. In Example 2, references to CONTINENT-NAME
re4uire only one subscript, reference to COUNTRY-NAME re~uires
two, and references to CITY-NAME and CITY-POPULATION re~uire
three.

PAGE 99

When more than one subscript is re~uired, they are written in
order of succ•ssivalv less inclusive dimensions of th• data(
organization. When a data-name is used as a subscript, it mav be
used to refer to items in manv different tables. These tablas need
not have elements of the same size. The data-name mav also appear
as the onlv subscript with one item and as one of two or three
subscripts with another item. Also, it is permissible to mix
literal and data-name subscripts, for example: CITY-POPULATION
(10, NEWKEY, 42>.

Another method of referring to items in a table is indexing. To
use this technique, the programmer assigns one or more index-names
(defined with the INDEXED-BY phrase of the OCCURS clause> to an
item whose data description contains an OCCURS clause. There is no
separate entrv to describe the index-name since its definition is
completelv hardware-oriented and it is not considered data per se.
At obJect time the contents of the index-name will correspond to
~n occurrence number for that specific dimension of the table to
which the index-name was assigned. The initial value of an
index-name at obJect time is not determinable and the index-name
must be initialized bv the SET statement before use.

When• reference is made to a table element, or to an item within
a table element, and the name of th• item is followed b~ its
releted index-name or names in parentheses, then each occurrence
number re~uired to complete the reference will be obtained from
the respective index-name. The index-name thus acts as a subscript
whose value is used in an~ table reference that specifies,
indexing.

l
PAQE 100

VI

PROCEDURE DIVISION

PAGE 101

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
program. This division mav contain declaratives and nondeclarative
procedures.

The Procedure Division is identified by and must begin with the
following h-eader:

PROCEDURE DIVISION [USING data-name-1 C,data-name-2] ... l.

The USING phrase is present if and only if the obJect program is
to function under the control of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
head•~ mu~t b• d•fin•d ~~ ~ d~t.~ ~~~m ;~ +.h.~ Li~~~ge Se~tion o~
the program in which this header occurs, and it must have a 01 or
77 level-number.

Within a called program, Linkage Section data items are processed
according to their descriptions given in the called program. Of
those items defined in the Linkage Section only data-name-1,
data-name-2, items subordinate to these data-names, and
condition-names and/or index-names associated with such data-names
and/or subordinate data items, may be referenced i~ the Procedure
Division.

When the USING phrase is present, the obJect program operates as
if data-name-1 of the Procedure Division header in the called
program and data-name-1 in the USING phrase of the CALL statement
in the calling program refer to a single set of data that is
equallv available to both the called and calling programs. Their
definitions must contain the same data descriptions; however, they
need not be the same name. In like manner, there is an equivalent
relationship between data-name-2, ... , in the USING phrase of the
called program and data-name-2, ... , in the USING phrase of the
CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division
header of the called program; however, a given data-name ma~
appear mor• than once in the same USING phrase of a CALL
statement.

PAGE 102

Structure

Th• bodv af th• Procedur• Division must conform to ane of the
following formats:

FORMAT 1

PROCEDURE DIVISION CUSINQ data-name~t C,data-name-2J ... l.

CDECLARATIVES.

<section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] ... l ... > ...

END DECLARATIVES. l

<section-name SECTION [segment-number].

[paragraph-name. [sentence] ... l ... > ...

CEND PROGRAM].

FORMAT 2

PROCEDURE DIVISION CUSINQ data-name-1 C,data-name-21 ... l.

(paragraph-name. (sentence] ... } ...

C END PROGRAM l.

The segment-number must be an integer ranging in value from 0
through 127.

If the segment-number is omitted from the section header, the
segment-number is assumed to be 0.

Sections in the declaratives must contain segment-numbers less
than 50.

PAGE 103

All sections which have th• same segment-number constitute a
program segment. Sections with the same segment-number must be]
phvsically contiguous in the source program.

Segments with segment-numbers 0 through 49 belong to the fixed
portion of the obJect program. Segments with segment-numbers 50
through 127 are independent segments. Independent segments must
follow lixed segments.

Declaratives

Declarative sections must be grouped at the beginning ol the
Procedure Division preceded bv the kev word DECLARATIVES and
lollowed by the key words END DECLARATIVES.

Procedures

A procedure is composed of a paragraph, or group ol successive
paragraphs, or a section, or a group of successive sections within
the Procedure Division. If one paragraph is in a section, then all
paragraphs must be in sections. A procedure-name is a word used to
refer to a paragraph or section. It consists of a paragraph-name
<which mav be ~ualified>, or a section-name.

A section consists of a
successive paragraphs.
section or at the end
declaratives portion
END DECLARATIVES.

section header followed by zero, or more
A section ends immediately before the next
of the Procedure Division or, in the

of the Procedure Division, at the ka@ words

A paragraph consists of a paragraph-name followed by a period and
a space and by zero, or more successive sentences. A paragraph
ends immediately before the next paragraph-name or section-name or
at the end of the Procedure Division or, in the declaratives
portion of the Procedure Division, at the key words END
DECLARATIVES. A paragraph-name must not be duplicated within a
section.

Execution

Execution begins with the first statement of the Procedure
Division, excluding declaratives. Statements are then executed in
the order in which they are presented for compilation, except
where the rules indicate some other order.

PAGE 104

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or section-name.
Paragraph-names mav be qualified b~ the section-name of the
section containing the paragraph, whether or not it needs
quali,ication. When referring to a section-name or when using a
section-name as a qualifier, the word SECTION must not appear.
Oualification is performed bv following a paragraph-name with a
section-name preceded blJ IN or· OF. IN and OF are logicallv
etuivalent. The general format for paragraph qualification is:

paragraph-name C<OF) section-name]

<IN>

A paragraph-name need not be quali,ied when referred to from
within the same section or when the paragraph-name is unique.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from
statement to statement in the sequence in which they were written
in the source program unles~ an explicit transfer of control
overrides this sequence or there is no next executable statement
to which control can be passed. The transfer of· control from
statement to statement occurs without the writing of an explicit
Procedure Division statement, and therefore, is an implicit
transfer of cQntrol.

COBOL provides both explicit and implicit means of altering the
implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a
procedure branching· statement. COBOL provides the foll owing types
of implicit control flow alterations which override the
statement-to-statement transfers of control:

If a paragraph is being executed under control of another
COBOL statement (for example, PERFORM and USE) and the
paragraph is the last paragraph in the range of the
controlling statement, then an implied transfer of control
occurs from the last statement in th• paragraph to the control
mechanism of the last executed controlling statement. Further,
if a paragraph is being executed under the control of a
PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and

PAQE 105

the fiTst statement in that paragTaph for each iterativ•
execution of the paragraph.

When any COBOL statement is executed which results in the
execution of a declarative section, an implicit transfer of
control to the declarative section occurs. Note that another
implicit transfer of control occurs after execution of the
declarative.

An explicit transfer of control consists of an alteration of the
implicit control transfer mechanism by the execution of a
procedure branching or conditional statement. An explicit transfer
of control can be caused only by the execution of a procedure
branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an
explicit tTansfer of control, but affects the explicit transfer of
control that occurs whe.n the associated GO TO statement is
executed.

In this document, the term 'next executable statement' is used to
refer· to the next COBOL statement to which control is transferred
according to the ~ule~ ~bov~ ~"d th~~~!~~ ~~~~ci~t~d wit~ e~ch
language element in the Procedure Division.

There is no next ex~cutable statement following:

The last statement in a declarative section when the paragraph
in which it appears is not being executed under the control of
some other COBOL statement. In COBOL, the result would be an
implicit transfer of control to the first nondeclarative
statement.

The last statement in a program when the paragraph in which it
appears is not being executed under the control of some other
COBOL statement. The result would be as if an implicit STOP
RUN statement were executed.

PAGE 106

SEQMENTATION

COBOL segmentation is a facility that provides a means by which
the useT may communicate with the compiler to specify obJect
program overlay requirements. COBOL segmentation deals only with
segmentation of procedures.

Segments

When segmentation is used, the entire Procedure Division must be
in sections. In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent
segments of the obJect program as determined by the assignment of
segment numbers. All source paragraphs which contain the same
segment-numbers can range from 00 through 127, it is possible to
subdivide any obJect program into a maximum of 128 segments.
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness.

Fixed Portion

The fixed portion is derined as that part of the obJect program
which is always in memory. This portion or the program is composed
of segments with segment-numbers O through 49.

Independent Segments

An independent segment is defined as part of the obJect program
which can overlay, and can be overlaid by, another independent
segment. An independent segment has a segment-number 50 through
127.

An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for
the first time during the execution of a program.

On subsequent transfers of control to the segment, an independent
segment is also in its initial state when:

Control is transferred to that segment as a result of the
implicit transfer of control between consecutive statements
from a segment with a different segment-number.

Control is transferred explicitly to that segment from a
segment with a different segment-number.

PAGE 107

On subsequent tT"ansfer of control to the segment, an
segment is in its last-used state when control is
implicitly to that segment from a segment with a
segment-number.

Segmentation Classification

independent
transferred

different

Sections which are to be segmented are classified using a system
of segment-numbers and the following criteria:

Logic Re~uirements--Sections which must be available for
reference at all times, or which are referred to very
fT"equently, are normally classified as belonging to one of the
permanent segments; sections which are used less frequently
ar~ normally classified as belonging to one of the independent
~egments, depending on logic requirements.

Frequency of Use--Generallv, the more ,requently a section is
!"~~err:d to, tt;; ::.uwll:."i- i ~'5 segment-numoer; the less frequently
it is referred to, the higher its segment-number.

Relationship to Other
communicate with one
segment-numbers.

Segmentation Control

Sections -- Sections
another should be

u,hich
given

frequently
the same

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. Control may be
transferred u,ithin a source program to any paragraph in a section;
that is, it is not mandatory to transfer control to the beginning
of a section.

Restrictions on Program Flow

When segmentation is used, the following restrictions are placed
on the ALTER and PERFORM statements.

PAGE 108

The ALTER STATEMENT

A QO TO statement in a section whose segment-number is great•~
than or etual to 30 must not be referred to by an ALTER statement
in a section with a different segment-number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range,
onlv one of the following:

Sections and/or paragraphs wholly contained in one or more
fixed segments, or

Sections and/or paragraphs wholly contained in a •tngle
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range, in addition to anu declarative sections
whose execution is caused within that range, only one of the
following:

Sections and/or paragraphs whollv contained iri one or more
fixed segments, or

Sections and/or paragraphs wholly contained in the same
.independent segment as that PERFORM statement.

PAQE 109

THE USE STATEMENT

Th• USE statem•nt specifies piocedures for input-output error
handling that are in addition to the standard procedures provided
bv the input-output control system. It is a compiler directing
statement re~uired in each declarative section.

FORMAT

USE AFTER STANDARD <EXCEPTION}

<ERROR }

PROCEDURE ON {file-name-1 C,file-name-21 ... >

<INPUT

<OUTPUT

<I-0

<EXTEND

>

>

>

A USE statement, when present, must immediatelv
header in the declaratives section and must be
period followed by a space. The remainder of
consist of zero, one or more procedural paragrahs
procedures to be used.

follow a section
followed by a

the section must
that define the

The USE statement itself is never executed, it merely defines the
conditions calling for the execution of the USE procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

The designated procedures can be executed by the input-output
system after completing the standard input-output error routine,
or upon recognition of the INVALID KEY or AT END conditions, when
the INVALID KEY phrase or AT END phrase, respectively, has not
been specified in the input-output statement.

After execution of a USE procedure, control is returned to the
invoking routine.

PAOE 110

l

Within a USE procedure, there must not be any reference to any
nondec larat i ve proc ed UT'es. Converse l 1,1, in the nond ec larat i ve
portion there must be no reference to procedure-names that appear
in the declarative portion, except that PERFORM statements may
refer to a USE statement or to the procedures associated with such
a USE stat•1nent.

Within a USE procedure, there must not be the execution or any
statement that would cause the execution of a USE procedure that
had previously been invoked and had not yet returned control to
the invoking routine.

USE Example:

PROCEDURE DIV.ISION.
DECLARATIVES.
IO-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON I-0.
IO-ERROR.

DISPLAY II INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG= 0 N0° STOP RUN.

END DECLARATIVES.

PAGE 111

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT have several common features:

The data descriptions of the operands need not
anv necessarv conversion and decimal point
supplied throughout the calculation.

be the sames
alignment is

Arithmetic operations are calculated in either binary,
decimal, packed decimal, or mixed depending on the USAGE of
the operands and receiving item according to the _following
rules:

If the receiving data item of a divide operation is
DISPLAY or COMPUTATIONAL, the operation is always
calculated in decimal with any necessary conversions.

Intermediate and final results are calculated in binary if
all preceding intermediate results ~re binary and the next
operand has COMPUTATIONAL-I usage <except as noted in
previous paragraph). Otherwise, the remaining intermediate
and final results are calculated in decimal with -any
necessary conversions.

The maximum
digits. The
data item
operands in
not contain

size of each operand is eighteen (18) decimal
composite of operands, which is a hypothetical
resulting from the super-imposition of specified
a statement aligned on their decimal points, must
more than eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, t~o arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses. Any arithmetic expression may be preceded
by a unary operator. The permissible combinations of variables6
numeric literals, arithmetic operator and parentheses are given in
Combination of Symbols in Arithmetic Expressions Table.

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

PAGE 112

)

Arithmetic 0pel'ators

Thel'e al'e four binary arithmetic operators and
arithmetic operators that may be used in arithmetic
They are represented by specific charactel's that must
by a space and followed by a space.

Binary Arithmetic
Op•rators

+

* I

Unaru Arithmetic
Operators

Meaning

Addition
Subtraction
Multiplication
Division

Meaning

two unary
expressions.
be preceded

+ The effect of multiplication
bg numeric literal +1

Formation and Evaluation Rules

The effect of multiplication
by numeric literal -1.

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first, and within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

1st Unary plus and minus
2nd Multiplication and division
31'd Addition and subtraction

PAGE 113

Parentheses are used either to eliminate ambiguities in logic
where consecu~ive operations of the same hierarchical level appear
or to modify the normal hierarchical se~uence of execution in
expressions where it is necessary to have some deviation from the
normal precedence. When the se~uence of execution is not secifi~d
by parentheses, the order of execution of consecutive operations
of the same hierarchical level is from left to right.

The ways in which operators, variables, and
combined in an arithmetic expression are
following table, where:

pa-rentheses
summarized

The letter 'P' indicates a permissible pair of symbols.

The character '-' indicates an invalid pa1r.

'Variable' indicates an identifier or literal.

FIRST
I SYMBOL
I Variable

SECOND SYMBOL

*I-+ I Unary+ or - ()

mav
in

I•===================== ========I====================
Variable p p

------------ ---------- --------:--------------* I + ... p p p

Unar'=' +or- P P

(

)

----------: -------- :. -------------
p . I p

----------1--------1--------------
1
I p

p

---.---
- : p

be
the

An arithmetic expression may only begin with the symbol '(', '+',
'-', or a variable and may only end with a ')' or a variable.
There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user
operations without the restrictions on
and/or receiving data items.

CONDITIONALS

to combine
composite

arithmetic
o.P operands

The conditions are relation, class, condition-name, and
switch-status. A condition has a truth value ol 'true' or 'false'.

PAGE 114

Relation Condition

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a
literal. A relation condition has the truth value of 'true' if the
relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for
all other comparisons the operands must have the same usage. If
either of the operands is a grou~ item, the nonnumeric comparison
rules appllJ.

The general format of a relation condition is as follows:

(identifier-!} <IS CNOTJ GREATER THAN}{identifier-2 }

{literal-1 } {IS CNOTJ LESS THAN }{literal-2 }

{index-name-1} {IS CNOTJ EQUAL TO }-Cindex-name-2 }

<IS CNOTJ > }

<IS CNOTJ < }

<IS CNOTJ = }

The first operand Cidentirier-1, literal-1 or index-name-1) is
called the subJect OT the condition; the second operand
(identirier-2, literal-2 or index-name-2> is called the obJect of
the condition. The relation condition must contain at least one
re~erence to a variable.

PAGE 115

The relational operator speci·Hes. the t1Jpe of' compat-ison to be
made in a relation condition. A space must precede and follow each
reserved word comprising the relational operator. When used, 'NOT'
and the next key word or relation character at-e on• relational
operator that defines the comparison to be executed for truth
value; e.g., 'NOT EGUAL' is a truth test for an 'uneq_ual'
comparison; 'NOT GREATER' is a truth test for an 'ectual' or 'less'
comparison. The meaning of the relational operators is as follows:

Meaning Relational Operatot-

Greater than or not greater than IS CNOTl GREATER THAN

IS CNOTl >

Less than or not less than IS CNOTl LESS THAN

IS CNOTJ <

Ectual to OT' not ectual to IS CNOTl EGUAL TO ----
IS CNOTJ =

NOTE: The req_uired relational characters '>', '<', and '=' are
not underlined to avoid confusion with other symbols such
as '~' < greater than or eq_ual to>.

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made with
respect to the algebraic value of the operands. The length of the
literals or operands, in terms of number of digits represented, is
not significant. Zero is considered a unique value regardless of
th• sign.

Comparison of these operands is permitted regardless of the manne~
in which their usage is described. Unsigned numeric operands are
considered positive ~or purposes of comparison.

PAGE 116

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric
operand, a comparison is made with respect to a specified
collating sequence of characters. If one of the operands is
specified as numeric, it must be an integer data item or an
integer literal and:

If the nonnumeric operand is an elementar~ data item or a
nonnumeric literal, the numeric operand is treated as though
it were moved to an elementary alphanumeric data item or the
same size as the numeric data item (in terms of standard data
format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand.

If the nonnumeric operand is a group item, the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters), and the contents of this group item were
then compared to the nonnumeric operand.

A nn'!'lj11teg~r
operand.

.,__

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be
compared only when their usage is the same. There are two cases to
consider: operands OT equal size and operands OT unequal size.

Operands of equal size: If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached,
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair,
when the low order end is reached.

The first encountered pair of unequal characters is compared to
determine their rel~tive position in the collating sequence. The
operand that contains the character that is positioned higher in
the collating sequence is considered to be the greater operand.

Operands of unequal size: If the operands are cf une~ual size,
comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal size.

PAGE 117

Comparisons of Index-Names and/or Index Data Items

If two index-names are compared the result is the same as if the
corresponding occurrence numbers were compared.

For an index-name and a data item <other than an index data item)
or literal, the comparison is made between the occurrence number
that corresponds to the value of the index-name and the data item
or literal.

When a comparison is made between an index data item and an
index-name or another index data item, the actual values are
compared without conversion.

The result of the comparison of an index data item with any ,data
item or literal not specified above is undefined.

Class Condition

The class condition determines whether the operand is numeric,
that is, consists entirely of the characters '0', '1 ', '2', '3',
... , '9', with or without the operational sign; or alphabetic,
that is, consists entirely of the characters 'A', 'B', 'C', ... ,
'Z', space. The general format for the class condition is as
fol lows:

identifier IS CNOTJ {NUMERIC }

{ALPHABETIC}

The usage of the operand
display. When used, 'NOT'
condition that defines the
value, e.g., 'NOT NUMERIC'
operand is nonnumeric.

being tested must be described as
and the next key word specify one class
class test to be executed for truth
is a truth test for determining that an

PAGE 118 ·

)

The NUMERIC test cannot be used with an item whose data
description describes the item a• alphabetic or as a group item
composed of elementary items whose data description indicates the
presence of operational sign(s). If the data description of the
item being tested does not indicate the presence of an operational
sign, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present.
If the data description of the item does indicate the presence or
an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and a valid operational
sign is present. Valid operational signs for data items are the
standard data format characters, 1 + 1 and 1 - 1

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A 1 through 'Z' ~nd the
space.

Condition-name (Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name; The general-format for the
condition-name condition is as follows:

condition-name

If the condition-name is associated with a range o~ values, then
the conditional variable is tested to determine whether or not its
value falls in this range, including the end values.

The rules for comparing a conditional variable
condition-name value are the same as those specified for
conditions.

with a
relation

The result of the test is true if one of the values corresponding
to the condition-name equals the value of its associated
conditional variable.

PAGE 119

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of a
software switch. The switch-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch-status condition is as follows:

condition-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed by combining simple conditions,
combined conditions and/or complex conditions with logical
connectors (logical operators 'AND' and 'OR'> or negating these
conditions with logical negation (the logical operator 'NOT'>. The
truth value of a complex condition, whether parenthesized or not,
is that truth value which results from the interaction of all the
stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions
logically connected or logically negated. The logical operators
and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conJunction; the truth value
is 'true' if both of the conJoined
conditions are trues 'false' if one
or both of the conJoined conditions
is false.

Logical inclusive OR; the truth value
is 'true' if one or both of the
included conditions is true; 'false'
if both included conditions are false.

Logical negation or reversal of truth
value; the truth value is 'true'
if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and followed by
a space.

PAGE 120

Negated Simple Conditions

A simple condition is negated through the us• of the logical
operator 'NOT'. The negated simple condition effects the opposite
truth value for a simple condition. Thus the truth value of a
negated simple condition is 'true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated
simple condition is 'false' if and only if the truth value of the
simple condition is 'true'. The inclusion in parentheses of a
negated simple condition does not change the.truth value.

Th• general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one
of the logical operators 'AND' or 'OR'. The general format of a
combined condition is:

condition <<AND> condition> ...

{OR>

Where 'condition' may be:

A simple condition, or

A negated simple condition, or

A combined condition, or

A negated combined condition; i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses,
or

Combinations of the above.

PAGE 121

Although parentheses need never be used when
(but not both> is used exclusively in
parentheses may be used to affect the final
mixture of 'AND', 'OR' and 'NOT' is used.

Condition Evaluation Rules

either 'AND' or 'OR'
a combined condition,
truth value w~en a

Condition Evaluation Rules indicate the ways in which conditions
and logical operators may be combined and parenthesized. There
must be a one-to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis.

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence.
Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are
not used, or parenthesized conditions are at the same level of
inclusiveness, the following hierarchical order of logical
evluation is implied until the final truth value is determined:

Truth values for simple conditions are established.

Truth values for negated simple conditions are established.

Truth values for combined conditions are established:

'AND' logical operators, follo~ed by
'OR' logical operators.

Truth values for negated combined conditions are established.

When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations
of the same hierarchical level is from left to right.

PAGE 122

SEGUENTIAL OROANIZATION INPUT-OUTPUT

Th• sequential organization input-output statements
Procedure Division are the CLOSE, OPEN, READ, REWRITE,
USE, and WRITE statements.

Function

in the
UNLOCK,

Sequential organization input-output provides a capability to
access records of a file in established sequence. The sequence is
established as a re~ult of writing the records to the file.

Organization

Sequential files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor -record. These
predecessor-successor relationships are established by the order
of WRITE statements when the rile is created. Once established,
the predecessor-succqssor relationships do not change except in
the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally
written.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the OPEN
and READ statements.

PAGE 123

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE statement
and before ang applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation.

Status Keg 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output statement was
successfully executed.

'1' - At End. The se~uential READ statement was unsuccessfully
e?::~t2d as ~ r~~ult of an ~t~empt to read a record wnen no
next logical record exists in the file.

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violation
for a se~uential file or as the result of an input-output
error, such as data check parity error, or transmission error.

'9' - Qeneral Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Kev 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

II no further information is available concerning the
input-output operation, then status key 2 contains a value of
'0 I•

When status key 1 contains a value of '3' indicating a
permanent error condition, status key 2 mav contain a value of
'4' indicating a boundary violation. This condition indicates
that an attempt has been made to write beyond the externally
defined boundaries of a se~uential file.

PAGE 124

l

When status key 1
operating svstem
mav contain a:

contains a value of '9' indicating an
error condition. the value of status key 2

'0' indicating an invalid operation. This condition
indicates that an attempt has been made to execute a READ,
WRITE, or REWRITE statement that conflicts with the current
open mode or a REWRITE statement not preceded by a
successful READ statement.

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open.

'3' indicating file not available. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK.

'4' indicating an ,invalid open. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters.

'5' indicating invalid device or no next reel. This
condition indicates that an attempt has been made to open a
file having parameters (e.g., open mode or organization>
which conflict with the device assignment (RANDOM, INPUT,
PRINT, ... > or that an attempt has been made to execute a
CLOSE REEL statement for the last reel/unit of a multi-reel
file. In the case of a CLOSE REEL, the file has been
closed.

'6' indicating an undefined current record pointer status.
_This condition indicates that an attempt has been made to
execute a ~EAD sta~ement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates an attempt has been made to open a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum record
size, or a REWRITE statement when the new record length is
different from that of the record to be rewritten.

PAGE 125

RELATIVE ORGANIZATION INPUT-OUTPUT

Th• Relative input-output statements in the Procedure Division ar•
the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Relative input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
recoTd in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's logical
position in the file.

Organization

Relative file organization is permitted only on mass storage
devices <RANDOM device>.

A relative file consists of records which are identified by
relative record numbers. The file mag be thought of as composed of
a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record
number, an integer value greater than zero. Records are stored and
retrieved based on this number. For example, the tenth record is
the one addressed by relative record number 10 and is the tenth
record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file.

PAGE 126

1

In th• random access mode, the sequence in which records are
accessed is controlled by the programmer. The desired record is
accessed by placing its relative record number in a relative key
data item.

In the dynamic acc~ss mode,
••~uential access to random
input-output statements.

Current Record Pointer

the programmer may change at will from
access using appropriate forms of

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
valu• is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical
~•cord exists in the file.

PAGE 127

'2' - Invalid Kev. The input-output statement was
unsuccessfully executed as a result of one of the following: J

Duplicate Key
No Record Found
Boundary Violation

'3' - Permanent
unsuccessfully
error, such as
erl'or.

Error. The
executed as
data check,

input-output
the result of
parity error,

statement was
an input-output

or transmission

'9' - General Error. The input-output statement was
unsuccessfully executed as a result ol a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results

"""'"'<p\~ ""' ... _,,_. ___ ...,, ..
as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
10 I•

When status key 1 contains a value of '2' indicating an
INVALID KEY condition, status key 2 is:

'2' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

'3' indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file.

'4' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a
operating system error condition,
is;

value of '9' indicating an
the value of status key 2

'0' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the cu~rent open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAGE 128

'1' indicating file not opened. This condition indicates
that •n attempt has been made to execute a DELETE, START,
UNLOCK, READ, WRITE, REWRITE, or CLOSE statement on a file
which is not currently ope~ ..

'2' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is cuT'rently
op•n.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed WITH
LOCK.

'4' indicating invalid OPEN. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters <e.g., open mode or organization> which
conflict with the device assignment <RANDOM, INPUT, PRINT,
. . .) .

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to OPEN.a file
that ~as defined with a maximum record length different
f~om the externallg defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smalleT' than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

The INVALID KEV Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the Svstem takes
these actions in the followini OT'der:

PAGE 129

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.]

If the INVALID KEY phrase is
causing the condition, control is
KEY imperative statement. Any USE
file is not executed.

specified in the statement
transferred to the INVALID
procedure specified for this

If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly, for
this file, that procedure is executed.

When the INVALID KEY condition occurs,
input-output statement which recognized
unsuccessful and the file is not affected.

The AT END Condition

execution of the
the condition is

The ~• END conai~icn can occur as a resui~ oi the execution oi a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 130

INDEXED ORGANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Indexed input-output provides a capability to access records of a
mass storage file in either a random or se1uential manner. Each
record in a nonsequential organization file is uni~uelv identified
bu a key.

Organization

A ,11e whose organization is indexed is a mass storage file in
which data records may be accessed by the value of a key. A record
description may include one or more key data items, each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index.

The data item named in the RECORD KEV clause of the file control
entry for a file is the prime record key for that file. For
purposes of inserting, updating and deleting records in a file,
each record is identified solely by the value of its prime record
kev. This value must, therefore, be unique and must not be changed
when updating the record.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the keys of all records which
currently exist within the file.

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. For indexed files, the
desired record is accessed by placing the value of its record key
in a record key data item.

PAGE 131

In the dynamic access mode,
se~uential access to random
input-output statements.

Current Record Pointer

the programmer may change at will from
access using appropriate forms of

The current record pointer is a conceptual entity used in this
document to facilitate specification ol the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS ciause is specif1ea 1n a flle control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'0' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'2' - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

PAGE 132

'3' - Permanent
unsuccessfull~
error, such as
error.

Error. The
executed as
data check,

input-output
th,e result of
pari t1J error,

statement was
an input-output

or transmission

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status keg~

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to Further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
'0,.

When status k~u 1 ~ont.ain~ ~ v~,~~ n~ 0: i~dicat!ng ~

successful completion, status key 2 may contain a value of 2,
indicating a duplicate key. This condition indicates:

For a READ statement, the key value for the current key of
reference is equal to the value of that same key in the
next record within the current key of reference.

For a WRITE or REWRITE statement, the record Just written
created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

When status key 1 contains a value of '2' indicating an
INVALID KEY condition, status key 2 is:

'1' indicating a sequence error for a sequentially
accessed indexed file. The ascending sequence requirement
of successive record key values has been violated or the
reco~d key value has been changed by the COBOL program
between the successful execution of a READ statement and
the execution or the next REWRITE statement for that file.

PAGE 133

'2' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate kev.

'3' indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file.

'4' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a
operating system error condition,
is:

value of '9' indicating an
the value of status key 2

'0' indicating invalid operation. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

'1' indi.::ati,,y file .-..;.;t uj,eiic~. ni.i~ -i.:v,Hlitiu,, .i111:H,att:'~
an attempt has been made to execute a delete, start,
unlock, read, write, rewrite, or close statement on a file
that is not currently open.

'2' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed with
LOCK.

'4' indicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters Ce. g., open mode or organization which conflict
with the device assignment <RANDOM, INPUT, PRINT, ...)).

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

PAGE 134

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
•••cute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

'8' indicating an invalid indexed file. This condition
indicates that the indexed file contains inconsistent
data. This is a catastrophic error from which there is no
recovery at the present time.

PAGE 135

The INVALID KEV Condition

The INVALID KEV condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEV condition.

If the INVALID KEV phrase is specified in the statement
causing the condition, control is transferred to the INVALID
KEY imperative statement. Anv USE procedure specified for this
file is not executed.

If the INVALID KEY phrase is not· specified, but a USE
procedure is specified, either explicitly or implicitlv, for
this file, that procedure is executed.

When the INVALID KEY cvndi~iwn v~~w,;, c~&~u~iG .. wf the
input-output statement which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 136

PROCEDURAL STATEMENTS

The ACCEPT ... FROM Statement

The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier-1 according
to the rules of the MOVE statement. DATE, DAY, and TIME are
conceptual data items and, therefore, are not described in the
COBOL program.

FORMAT

ACCEPT identifier-1 FROM <DATE>

<DAY>

<TIME>

DATE is composed of the data elements year of centur<j, month of
year, and day of month. The sequence of the data element codes is
from high order to low order (left to right), year of century,
month of year, and day of month. Therefore, July 1, 1979 would be
expressed as 790701. DATE, when accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of
year. The se~uence of the data element codes is from high order to
low order (left to right) year of centurll, day of year. Therefore,
~uly 1, 1979 would be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length:

PAGE 137

TIME is composed of the data elements hours, minutes, seconds and
hundredths of a second. TIME is based on elapsed time after
midnight on a 24-hour clock basis--thus, 2:41 p.m. would be
expressed 14410000. TIME, when accessed by a COBOL program behaves
as if it had been described in a COBOL program as an unsigned
elementary numeric integer data item eight digits in length. The
minimum value of TIME is 00000000; the maximum value of TIME is
23595999.

ACCEPT ... FROM Examples

ACCEPT YEAR-DAY FROM DAY.
ACCEPT CLOCK FROM TIME.

PAGE 138

Th• ACCEPT Statement <Terminal 1-0>

Th• ACCEPT statement causes low volume data tG be accepted from
the CRT terminal and transferred to the specified data item.
ACCEPT statement phrases allow the specification of position, form
and format of the accepted data.

FORMAT

ACCEPT {identifier-1 C,UNIT (identifier-2}1
------ <literal-1 >

C,LINE {identifier-3>1 [,POSITION (identifier-4}1
<literal-2 > -------- <literal-3 >

C,SIZE {identifier-5}] [,PROMPT Cliteral-5JJ
<literal-4 > ------

[,ECHO] C,CONVERTl C,TABJ C,ERASEJ C,NO BEEPJ

C,OFFl C,<HIQH}l C,BLINKJ [,REVERSE]} ...

<LOW>

[,ON EXCEPTION identifier-6 imperative-statement]

The ACCEPT statement causes the transfer of data from the CRT
device. This data replaces the contents of the data item named by
identifier-1. The receiving data item must have usage DISPLAY if
ECHO is specifiedi otherwise, it mav have any usage except INDEX.

When an ACCEPT statement contains more than one operand, the
values are transferred in the sequence in which the operands are
encountered. ACCEPT phrases apply to the previously specified
identifier-1 only. A subsequent identifier-! in the same ACCEPT
statement will be treated as if no previous phrases have been
specified.

An ACCEPT statement may contain no mo~e than one ON EXCEPTION
phrase, and if p~esent it must be associated with the last (or
onlv> identi,ier-1.

Note: Features which re~uire support of the
system and/or terminal hardware may not
all svstems. Anv leatures which are not
compile correctly~ but will be ignored
the User's Guide for specific details.

PAGE 139

host operating
be supported on
supported will
at runtime. See

The UNIT Phrase

Th• UNIT phrase must be the first phrase if used. The other
phrases mav be written in anv order.

The value of identifier-2 or literal-1 in the UNIT phrase
sp•cifies the station identifier of the CRT from which the data is
ta be accepted. If t-he UNIT phrase is omitted, the CRT which
executed the program will be accessed.

The LINE Phrase

The value of identifier-3 or literal-2 in the LINE phrase
specifies the line number from which the data is to be accepted
from the screen of the CRT terminal, with 1 being the top line. If
the value is greater than the number of lines on the CRT screen,
it is adJusted to the maximum line number.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement, then data is to be accepted from the next line
below the current position of the cursor on the CRT screen unless
the value specified in the POSITION phrase is also zero, in which
case the data is to be accepted from the line at the current
position of the cursor on the CRT screen.

The POSITION Phrase

The value of identifier-4 or literal-3 in the POSITION phrase
specifies the number of the character positions to which the
cursor is to be positioned within the specified line prior to the
accepting of data from the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adJusted to the maximum character number.

If the POSITION phrase is not specified, a value of 1 is assumed
for the first accepted operand and O for each additional operand
accepted in the same statement. If a value of O is specified, the
data is to be accepted starting at the next field on the CRT
screen (starting character position plus size of last ACCEPT or
DISPLAY>.

PAGE 140

The SIZE Phr•s•

The value of identifier-5 or lite-ral-4 in the SIZE phrase
specifies the maximum number of characters to be accepted from the
CRT terminal, overriding the Data Division definition of the
field. If the SIZE phrase is not present or a value of O is
specified, then the size of identifier-1, <identifier-5, > is
used. A size greater than 80 is treated as equal to 80. . . . ~

The size of the accepted field is determined by the SiZE phrase.
The number of characters transferred from the CRT is less than or
equal to the size of the accepted field. Input is terminated bu
depression of the return key (which is not considered part of the
input>. The number of characters actuallv input is the size of the
source in the following:

If the receiving item is not numeric, the accepted input is
stored according to the rules of the MOVE statement for an
alphanumeric source and destination. If the receiving item is
described JUSTIFIED RIGHT, the clause will apply to the MOVE
i'vla •.

,.,
If the receiving item is numeric, the accepted input is stored
according to the rules of the MOVE statement for a numeric
source and destination. If the CONVERT phrase is not
specified, the source has the same scale as the receiving
item. If the receiving item has a trailing sign and the
CONVERT phrase is not specified, the input must contain digits
followed by a sign character. If the CONVERT phrase is
specified, then the input is converted according to the rules
of the CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the ~ey word PROMPT in an ACCEPT statement causes
the data to be accepted with prompting. The action of prompting is
to display fill characters on the CRT screen in the positions from
which data is to be accepted. Literal-5 must be a single character
nonnumeric literal which specifies the fill character to be used
in prompting. If literal-5 is omitted in the PROMPT phrase, then
an underscore will be used as the fill character.

When the PROMPT phrase is not specified, then the data is to be
accepted without prompting; the original contents of the field on
the CRT will be undisturbed before accepting input.

PAGE 141

Th• ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-1 to be displayed on the screen
of the CRT terminal. Conversion <see CONVERT Phrase>, decimal
alignment, and Justification are perfol'med pi-ior to display. If
the specified size is greater than the size of the receiving
data-item, the data-item is displayed right Justified in the
accept field with leading blanks. If the specifi•d size is less
than•the size of the ·receiving data-item, the display· is.truncated
on the right. When the ECHO phrase is not specified, the orig.inal
input data remains in the accept field.

The CONVERT Phrase

If the rece1v1ng data-item is numeric, the presence of the key
word CONVERT within an ACCEPT statement causes the conversion of
an accepted field to a trailing-signed decimal field. The
trailin~-si,:m decimal field is then stored in identifier-1. The
conversion is accomplished by a left-to-right scan and the rules:

Set the sign according to the rightmost sign given in the
input or positive if no sign is present.

Set the
input or
IS COMMA
replaces

scale according to the rightmost period given in the
to zero if no period is present. If the DECIMAL POINT
clause was specified in the source program, a comma
the period in determining the scale.

Delete all nonnumeric characters from the accepted field.

When the CONVERT phrase is not specified, or the recei\,ing
data-item is not numeric, then the data is to be stored without
the above conversion.

The TAB Phrase

The presen~e of the key word TAB in an ACCEPT statement causes a
wait for a tab, return or backspace key in reaching the end of the
input field; the return wi 11 then terminate input, the backspace
character will position the cursor back one character, the tab
will reposition the cursor to the beginning of the field and all
other input will be ignored. If the key word TAB is omitted, input
will automatically be terminated if the end of the input field is
encountered.

PAGE 142

l

Th• ERASE Phrase

The presence of the kev word ERASE within an ACCEPT statement
causes the screen of the CRT to be erased prior to cursor
positioning. When the ERASE phrase is not specified, then the
screen is not erased prior to cursor positioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes supression of the beep signal upon cursor positioning. If
the key words NO BEEP are omitted, a beep signal will occur upon
cursor positioning prior to data input.

The OFF Phrase

T~~ ~~e~en~e ~ft~~ ~e~ ~~~~ OFF ~it~in ~n ACCEPT ~t~tement ~~~~e~
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIGH/LOW Phrase

The presence of the key word HIGH or LOW causes the PROMPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIGH or LOW is not specified, the default display is HIGH.

The BLINK Phrase

• The presence of· the key word BLINK· causes the PROMPT character,
and anv displayed data, to be BLINKed. When BLINK is not
specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT character,
and anv displaved data, to be displaved in a reverse image mode.
When REVERSE is not specified, normal display is provided.

PAGE 143

The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative-statement to be
executed if an invalid character is entered. The invalid character
(in ASCII format> will be placed in identirier-6 prier to
execution of the imperative-statement. The invalid character may
be determined by declaring identifier-6 as USAGE COMP-1 and
testing for its ASCII value.

When ON EXCEPTION ·and CONVERT are both specified and a conversion
error occurs, an error code of "98" is retur~ed in identifier-6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION 0,
PROMPT, ECHO.

ACCEPT YEAR, LINE YR-LN, POSITION YR-POS;
MONTH, LINE MN-LN, POSITION MN-POS.

PAGE 144

1

The ADD Statement

The ADD statement causes two or more numeric ~perands to be summed
and the result to be stored.

FORMAT 1

ADD {identifier-!} t, identifier-2J

{literal-1 > C,literal-2 J

TO identifier-m CROUNDEDJ

C;ON SIZE ERROR imperative-statement]

FORMAT 2

ADD {identifier-1}, {identifier-2} C, identifier-3J

{literal-1 > {literal-2 > C,literal-3 J

GIVING identifier-m CROUNDEDJ

t;ON SIZE ERROR imperative-statement)

FORMAT 3

ADD {CORRESPONDING} identifier-1 TO identifier-2 [ROUNDED]

<CORR }

CJ ON SIZE ERROR imperative-statement]

In Format 1, the values of the operands preceding the word TO are
added together, then the sum is added to the current value or
identifier-m storing the result immediately into identifier-m.

In Format 2, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of
id ent if i er-m.

PAGE 145

In Formats 1 and 2, each identifier must refer to an elementary
numeric item, except that in Format 2 identifier-m following the
word GIVING must refer to either an elementarg numeric item or an
elementary numeric edited item.

In Format 3, data items in identifier-I are added to and stored in
the corresponding data items in identifier-2.

In Format 3, e..ach identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number o/ places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultan~-1aent1f1er, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If the CORRESPONDING phrase is specified, and any of the
individual additions produces a size error condition, the
imperative-statement is not executed until all of the individual
additions are completed.

If the resultant-identifier has COMPUTATIONAL-3 usage,
is correctly detected only for data items declared
length picture clause. Therefore all COMP-3 data items
declared with an odd number of character positions.

PAGE 146

size error
with an odd

should be

•

]

r, the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is spe~ified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The .CORRESPONDING Phrase

If the CORRESPONDING phrase is
identifier-1 are ADDed to, and
corresponding items in identifier-2.

u·sed, selected items within
the result stored in, the

Data items referenced bv .the CORRESPONDINQ ph,-ase must adheT'e to
the following rules:

A data item in identifier-1 and a data item in identifier-2
must not b• designated bv the key word FILLER and must not
have the same data-name and th• ~;1mp 1?,•.1.-i ! ~; ,.,..5- !IP t.o, ~ut n~t
including, identifiers-1 and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-1
contain level-number 66, 77,
clause.

and identifier-2 must not
or 88 or the USAGE IS INDEX

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAQE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 147

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY>

ADD JOHNS-PAY, PAULS-PAV, ALBERTS-PAV
QIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT (X)
TO ELEMENT (Y).

ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR GO TO ERR.

PAGE 148

l

The ALTER Statement

The ALTER statement modifies. a
operations.

FORMAT

prede~ermined sequence

.
ALTER procedure-name-1 TO [PROCEED TOl procedure-name-2

C,procedure-name-3 TO [PROCEED TOl procedure-name-4J ...

of

Each procedure-name-1, procedure-name-3, ... , is the name of a
paragraph that contains a single sentence consisting of a GO TO
statement without the DEPENDING phrase.

Each procedure-name-2, procedure-name-4, ... ,
paragr~ph or ~ecti~n in tta P~~c~d~F~ Z1~1~l~~.

is the name of a

Execution of the ALTER statement modifies the QO TO statement in
th• paragraph named procedure-name-1, procedure-name-3, ... , so
that subsequent executions of the modified GO TO statements cause
transfer of control to procedure-name-2, procedure-name-4, ... ,
respectively. Modified GO TO statements in independent segments
mav, under some circumstances, be returned to their initial
states.

A QO TO statement in a section whose segment-number is greater
than or equal to 50 must not be referred to by an ALTER statement
in a section with a different segment-number.

PAGE 149

The CALL Statement

The CALL statement causes control to be transferred from one
obJect program to another, within the run unit.

FORMAT

CALL <identifier-1} [USING data-name-1 C,data-name-2l ... l
{literal-1 } -----

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 or
identifier-!, the 'cal led' program.

Literal-1 must be a nonnumeric literal.

Identifier-! must be defined as an alphanumeric data item such
that its value can be a orogram name.

The called program can be another COBOL program or an assembly
language program. Refer to the User's Guide for specific details.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or e~ual to 50, the EXIT PROGRAM statement returns
control to the calling program.

The USING Phrase

The data-names specified by the USING phras~ of the CALL statement
indicate those data items available to a calling program that may
be referred to in the called program. The order of appearance of
the data-names in the USING phrase of the CALL statement and the
USING phrase in the Procedure Division header is critical.
Corresponding data-names refer to a single set of data which is
available to the called and calling program. The correspondence is
positional, not by name. In the case of index-names, no such
correspondence is established. Index-names in the called and
calling program always refer to separate indices.

PAGE 150

l

The USING phrase is included in the CALL statement only if there
is • USING phrase in the Procedure Division header of the called
program, and the number of operands in each USING phrase must be
identical.

Each of the operands in the USING phrase must have been defined as
a data item in the File Section, Working-Storage Section, or
Linkage Section, and must have a level-number of 01 or 77.
Data-name-1, data-name-2, ... , may be qualified when they
reference data items defined in the File Section.

CALL Examples:

CALL "SUBPRG1".

CALL REORDER
USINQ TABLE, INDEX-1, RESULT.

PAGE 151

The CLOSE Statement <Sequential I-O>

The CLOSE statement terminates the processing of ,ites.

FORMAT

CLOSE file-name-1 C<REEL> CWITH NO REWIND]]

<UNIT>

CWITH {NO REWIND) l

<LOCK)

C,file-name-2 C<REEL> CWITH NO REWINDJ l J .•.

iUNiTi

[WITH <NO REWIND> l

<LOCK

The function of a CLOSE statement
the operating system to close
OUTPUT, the operating svstem also
file.

>

(with no options> is to cause
the file. For files opened for

writes an EOF as it closes the

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EDF.

A CLOSE statement may only be executed for a file in an open mode.

Once a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of a CLOSE statement causes the value of the FILE
STATUS data-item, if any, associated with file-name-1
(file-name-2, ... > to be updated.

PAGE 152

l

Th• REEL and UNIT Phrases

Th• CLOSE REEL and CLOSE UNIT statements are documentary only and
m•v be included or omitted at the user's discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on liles assigned to
the printer. It has no elfect on other files.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153

The CLOSE Statement (Relative and Indexed I/0)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 CWITH LOCK) •
C,file-name-2 CWITH LOCKJJ

The function
the operating
OUTPUT, the
the file.

of a CLOSE statement (with no options) is to cause
system to close the file. For files opened for
operating system also writes an EOF prior to closing

If a STOP RUN cd::,,.-f:oman+ i~ 1?~~!:~ted ;:~i::-:- 4-- :::!:::;::.:-:;
operating system will close the file without an EOF.

~: , -
f £ .r. CI

.L L -
~If C:

The files referenced in the CLOSE statement need not all have the
same organization or access.

A CLOSE statement may only be executed for a file in an open mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of the CLOSE statement causes the value of the
specified FILE STATUS data item, if ang, associated with
file-name-1 (file-name-2, ... > to be updated.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Ex amp 1 es:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

PAGE 154

The COMPUTE.Statement

Th• COMPUTE statement assigns the .:value o, an arithmetic
expression to a data item.

FORMAT

COMPUTE identifier-I CROUNDEl>l = arithmetic-expression

[1 ON SIZE ER-ROR imperative-statement]

14entifier-1 must re#er to either an element~rv numeric item or an
elementary num•ric edited item.

An •rithmetic expression consisting ol a single identifier OT'

liteT'al ·provides a method of setting the value of identif!ie1"-1
equal to th• v~tue n# t~• ~ing!~ ident!~i=r :r !itar&!.

The.COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite operands and/or
r1tceiving _data items imposed by the arithmetic statements ADD#
SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponeritiation is not supported.

The ROUNDED.Phrase

Th• COMPUTE statement may optionally include the ROUNDED phrase.
If, after decimal point alignment# the number of places in the

·fraction of the result of an arithmetic operation is greater than
the number of places pro~ided for the fraction of the
identifier~t, truncation is relative to the size provided for the.
identifier-1. When rounding is re~uested, the absolute value of

. the re•ultant-identifier is increased by one (1) whenever the most
•ignificant digit of the excess is greater than or e~ual to five
. (5).

When the ·low-order integer positions in an identifier-1
represented bv the character 'P' in the picture for
id•ntifier, rounding or truncation occurs relative to
rightmost integer position for which storage is allocated.

PAQE 155

are
that
the

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest·valu• that can be contained in
identifier-1, a size error condition exists. If the ROUNDED phrase
is specified, rounding takes place before checking for size error.

If identifier-1 has COMPUTATIONAL-3 usage, size error is detected
onlv for data items declared with an odd length picture clause.
Therefore all COMP-3 data items should be declared with an odd
number of character positions.

Division bv zero alwavs causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the identifier-1 is undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value identifier-1 is not altered and the
imperative-statement in the SIZE ERROR phrase is executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED= WAGES* HOURS.

COMPUTE SECONDS= <<<HRS* 60> +MIN>• 60) + SEC.

COMPUTE AVERAGE= TOTAL/ KOUNT
ON SIZE ERROR MOVE OTO AVERAGE.

COMPUTE PAV <DATE> ROUNDED

= RATE * 8.

PAGE 156

l

Tb• DELETE Statement <Rel•tive and· Indexed I-O>

Th• DELETE statement logic•lly T'emoves a record from a mass
sto1'ag• file.

FORMAT

DELETE file-name RECORD [;INVALID KEY imperative-statement]

AfteT'· · the • ·successful •xecution · of a DELETE statement, the .
identified T'ecord has been logically T'emoved .PT'om the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the c·ontents
of the record area associated with file-name.

_The associated file must be opened in the I-0 mode at the time of
execution of this statement.

Fol" files in the sequential access mode. the last input-output
·statement executed for file-name prior to the execution of the·
DELETE statement must have been a successfully executed READ
statement. The system logically removes from the file the record

· that was accessed by that READ statement.

· For a file in random or dynamic access mode, the system logically
removes from the file that record identified by the contents of
the key data item associated with file-name. If the file does not
contain the record specified by the kev# an INVALID KEV condition
exists.

The execution of the DELETE statement causes the value of the
specified FILE STATUS data item, if any, associated with file-name
to be updated.

The ·INVALID KEV Phrase

The INVALID KEV
statement which
mode.

phrase· must not be specified for a DELETE
Teferences a file which is in seqtiential access

The INVALID KEV phrase must be specified foT a DELETE statement
which references a file which is not in se~uential access mode and
for which an applicable USE procedure is not specified.

The· current record pointer is not affected bv the execution of a
DELETE statement.

PAOE 157

.Tbe DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed on
th• 1pec1¥ied CRT terminal. DISPLAY statement phrases allow the
spec:ifieation of position, form and fol"mat of. the displayed data.

FORMAT

DISPLAY· <<identifier-1) t, UNIT (ident:ifi-ef'-2}J

{literal-1 } (l i t•ral-2 · > •

C,LINE {identifier-3}:J C,POSlTION{1dentifieT'-4}J

{literal-3 } {literal-4

C,SIZE {identilier.,;..5}J C,BEEPl C,ERASEJ>

{literal-5 >
C,<HIGH}J C,9LINKJ C,REVERSEJ}

·<LOW >

The DISPLAY statement causes the contents of each operand
:(identifier-I or literal-1) to be transferred to the CRT device in
the order listed. The sending data item must have DISPLAY usage.

When a DISPLAY statement contains more than one operand, the
values of the operands are transferred in the• se4uence in which
the operands are encountered.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly, but will be ignored at runtime. See
the User 1 s Guide for specific details.

The UNIT Phrase

The UNIT phrase, if specified, must be written first. The other
phrases may be written in any order.

The value of identifier-2 or literal-2
sJecifies the station identifier of the CRT
~o be displayed. If the UNIT phrase is
executed the program will be accessed.

· PAGE 158

in the UNIT phrase
upon which the data is
omitted, the CRT which

TII• valu• of· id•ntifier-3 or literal-3 in• the .LINE· phrase
specifi•s th• lin• numb•r upon which th• data is to b• displ~v•d
on th• screen· of the CRT terminal, with one being the top line. If
th• value is greater than the numbel" of lines on the CRT screen,
it is adJusted to the maximum line number. If the value. is zero OT'

th• LINE· phrase is not pl"esent in a DISPLAY statement, then data
is .to be displayed on the next line below the current position of
the· cuTsor· on the CRT screen unless the value specified in the
POSITION phrase is also zero, in which case the data is to be
displayed on the line at the current position of the cursor on the
CRT screen. If· incTementing to the next line generates a line
number greater than the maximum number of lines on the CRT scTeen,
the new line is displayed at the bottom.

The POSITION Phrase

The value of identif ier-4 or 1 i teral-4 in ·the POSITION p·hrase
SFSC!~i~s the n~~t~~ ~: t~e char~cter t~ ~hlch Lhe cursor 1ti to be
positioned 111ithin the specified line p1'ior to the displauing of
data on ~he screen of the CRT terminal, 111ith 1 being the leftmost
character position 111ithin a line. If the value is greater than the
aaximum number ·of characters within a line on the CRT screen, it
is adJusted to the max:.mum character number.

ff.the POSITION phrase is not specified, a value of one is assumed
for the first displayed operand and ze1'o for each additional
operand displayed in the same statement. If a value of zero is
specified~ the data is to be displayed starting at the next field
on the CRT screen (starting character position plus size of the
last ACCEPT. or DISPLAY).

The .SIZE Phrase

The valu·e of identifier-5 or literal-5 in the SIZE phrase
specifies the number of characters to be displayed on the screen
of the CRT terminal, overriding the Data Division definition of
the field. If the SIZE phrase is not present or a value of zero is
specified, the size of id enti f i er-1 or li teral-1 is used. If
literal-1 is a figurative constant, the literal has a size of one.
A size greater than BO is treated as e4ual to 80.

PAGE 159

II the ·size o·, the displav field is less tJ,an the size of the
sending d•t• item, only the lefltmoat cha1'act•1'• .,.. displaved. If.
the specilied size .is greater than the size of the sending date
item, the T'esults are unp1'edictable. If the sendint item is a
figuT'ative constant, the constant fills th• displav field. No
c~nve~sions a,-e made in the t1'ansfe1' to the displav field.

The BEEP Ph-rase

The p'l"·esence of the · lc•v 1110-rd BEEP 111i thin a DISPLAY statement
causes a beep signal to occu,- on curso1' positioning p1'ior to the
dtsplav of the data. If the BEEP lcev 1110Pd is omitted,· no signal is
given on cuPso-r positioning .

. The ERASE Phrase·

The pT'esence of the kev 1110rd ERASE 111ithin a DISPLAY statement
causes the screen of the CRT terminal to be erased befo1'e the
tontent of identifier-I or lite1'al-1 is dis,ta~ed on the screen.
When the ERASE phrase is not specified, then the sc-reen is not
e-rased p-rior to the displav of the data.

The HIQH/LOW Phrase

· The pT'esence of! HIQH 01" LOW causes the d.ata to l)e displayed at t-he
specilied intensit1J. When HIGH or LOW is not speciFied, the
default displalJ is HIGH.

The BLINK Phrase

·•
The presence oF thekey 1110,-d BLINK causes the displaved data to be
BLINKed. the normal mode is no blink.

The REVERSE·Phrase

The 'REVERSE key 111ord causes the data to be displayed in REVERSE
·video. The noTmal mode is no 1'everse.

PAGE 160.

)

DISPLAY Examples

DISPLAY "FLIOHT ARRIVING AT GATEt1, LINE FLT-LN,
POSITION 1, ERASE; GATE-NtJ!"1BER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE: 11 •

DISPLAY CRT-HEADER LINE 1 ERASE.

DISPLAY ZEROES SIZE 5.

OISPLAY GUOTE.

PAGE 161

The DIVIDE Statement

Th• DIVIDE statement divides one numeric data item into another
and stores the ,uotient.

FORMAT 1

DIVIDE {id.entif ier.,..1} INTO identifier-2 tROVNDEDl
.....,_........,.___ . -·----

<lite-ral-1. >

[;ON SIZE ERROR imperative-statement)

FORMAT 2

DIVIDE (identifier-!} INTO {identifitn•-2}

(literal-1 } {literal-2 }

GIVING identifier-3 CROUNDEDJ

CiON SIZE ERROR imperative-statement]

FORMAT 3

-DIVIDE {identifier-1} BY {identifier-2}

(literal-1 > {literal-2 }

GIVING identifier-3 CROUNDEDl

C10N SIZE ERROR imperative-statement]

In Format 1, the value of identifier-! or literal-1 is divided
into the value of identifier-2. The value of- the dividend
(identifier-2) is replaced by this quotient.

In Format 2, the value of identifier-1 or literal-1 is divided
into the value of identifier-2 or literal-2 and the result is
stored in identifier-3.

PAQE 162

In Form•t 3, the value of identifie,--1 01" liteT'al-1 is divided by
the value of identifi~r-2 OT' literal-2 and the result is stored in
ide-ntifier-3.

Each· identi fi•r · must refer to •n
that anv · identifier associated
to eith•r an •lemental'y num•ric
edited item.·

elementary nuaeT'ic item,· except
with the OIVINO phT'ase must·refe,
item or an elementaT'y · numeric

E•ch literal mus-t be • numeric litel'al~

The ROUNDED Phrase

The DIVIDE statement mav ·optionally· include the ROUNDED phrase.

If, after· decimal point alignment, the nuuer of places in the
·,..-action of the result of an arithmetic operation is gT'eater than
the number of places provided for the fraction of the
resultant-identifieT, tl'uncation is relative to the size provided
for ~n• resultant-iaent1fie1'. When Tounding is l'equested, the
absolute value. of the resultant-identifier is incT'eased by one
(1) 111henever the most significant digit of the excess is greateT'
than OT' equal to five (5).

When the low-order integeT' positions in a resultant identifieT' are
rep,-esented bv · the character 'P' in the. picture for that
resultant-identifier, rounding or tl'uncation occurs relative to
_the rightmost integer position for 111hich stoT'age is allocated .

. The SIZE ERROR Phrase

If, aftel' appT'OpT'iate decimal point alignment, the absolute value
.of the T'esult exceeds the largest value that can be contained in
the associated l'esultant-identifier, a size eTror condition
exists. If the ROUNDED phrase is specified, ~ounding takes place
before checking for size errol'.

If the resultant-identifier has COMPUTATIONAL-3 usage, size eT'rOl'
is detected onlv fol" data items declared with an odd length
pictu,-e clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

Division bv zero alwavs causes a size erT'or condition.

If the SIZE ERROR phrase
condition exists, the

. undefined.

is not
value of

PAOE 163

specified and a size errol'
the resultant-identifier is

If the SIZE ERROR ph-rase is speci,ied and a size e,•ror condition •
exists. the value of th• T'esultant-identifieT' is not altered and I
th• impeT'ative statement in the SIZE ERROR. pbTase is executed ..

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LOAO
OIVINQ MORRISS-WORK-LOAD

DIVIDE TOTAL-WORK-LOAD BY 2.5
GIVING ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR 00 TO ALFRED-QUIT.

DIVIDE 2.5 INTO TOTAL.

PAOE 164

The EXIT Statement

The EXIT statement p'rovides a common end point fo'r · a set"ies· of
pt"ocedut"es. 01" the logical end of a called pt"ogram.

FORMAT.

EXIT CPROORAMl.

the EXIT statement must appear in a sentence bv itself~

The EXIT ~~ntence must be t~e onlv sentence in the pat"agt"a~h.

An EXIT. statement without the wot"d PROORAH serves onlv to enable
the use'I' to assign a pt"ocedut"e-name to a given point in a p'rogt"am.
Such an EXIT statement has no othe'r effect on the compilation or
•••cution.of th~ ~~6~P~ffi.

An execution of an EXIT PROGRAM statement in•a CALLED program
· causes control to be passed to the calling program. Execution .of
an EXIT PROGRAM statement in a program which is not called behaves
as if the statement were an EXIT statement without the word
PROORAM.

· 'PAGE 165

.Th• 00 TO Statement

Th•. 00 TO statement causes contT'ol to be transfe-..red from one part
~, the Procedure Division to another.

FORMAT 1 ..

QO TO procedure-name-1.

FORMAT 2

00 TO procedure-na~e-1 C,pT'ocedure:..rtame-21 ... ,

p-rocedure-name-n DEPENDINO ON identif!ier-1.

If'•· Format 1 QO TO statem•nt appears in a consecutive seq,uence of
imperative statements within a sentence, it aust appeaT' as the

· last statement ·in that seq,uence.

When a FoT'mat 1 QO TO statement is executed, control is
transferred to procedure-name-1 or to anotheT' procedure-name if
the 00 TO statement has been modi,ied bv an ALTER statement.

When a parag1'aph is referenced by an ALTER
··paragraph can consist onlv o, a paragT'aph header

Format-1 CO TO statement.

The DEPENDINO ON Phrase

statement, that
follo1a1ed by a

When• a· Fo1'mat 2 QO TO statement is executed, cont1'ol is
transfer1'ed to procedure-name-1, procedure-name-2, etc., depending
on the value of the identif!ier-1 being 1, 2, ... , n. If the value
of the identifier-1 is anvthing other than the positive or
unsigned integeT's 1, 2, ... , n, then no transfer occurs and
control passes to the next statement in the normal seq,uence lot'
execution.

IdentifieT'-1 is the name of a numeric integer elementary item.

Th• IF Statem•nt

Th• IF state~ent ~aus•s a specifi•d condition to be •valuated. The
subse~uent action of the obJect program _depends on whether the
value of the condition is true or false.

FORl'IAT -

IF c~ndition; <statement-1 > (;ELSE stateaaent-2 >

<NEXT SENTENCE> {.ELSE NEXT SENTENCE> ---....-----
Statement-1 and statement-2 represent eitheT · an imperative
statement or a r.onditional statement. and either may be followed
bV a conditional statement.

·when an IF statement _ is executed, the following transfers of
control occur:

If the .condition is true, statement-I is executed if
specified. If statement-1 contains a p1"ocedure branching or
conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-1
does not contain a procedure branching or conditional
sta,tement, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

If the condition is true and the NEXT SENTENCE
speci,ied instead o, stateaent-1, the ELSE
speci,ied, is ignored and control passes to
executable sentence.

PAQE 167

phrase is
phrase, if

the next

If the condition is false, statement-1 or its surrogate NEXT .1 SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching o~
conditional statement, control is explicitlg transferred in
accordance with the rules of that statement. If statement-2
does ncit contain a procedure branching or conditional
statement, ·control passes to the next executab 1 e sentence. I fl
the ELSE statement-2 phrase is not specified, statement-1 is
ignored and control passes to the next executable sentence:

· If the conditio·n hi false, and the ELSE NEXT SENTENCE phl'ase
is speci-Fied, statement-1 is ignored, . if specified, and
control. passes to the next executable sentence.

Statement·-1 arid/OT' statement-2 may contain an IF statement. In
this case th.e IF. stat-ement is said to be nested.

IF statements withtn IF statements may be considered as paired IF
and ELS£ combinations, proceeding from left to right. Thus, any
ELSE encou:nteT'ed is considered to apply to the immediately
pT'eceding IF that has not been already paired ~ith an ELSE.

The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC,
MOVE CHAR-STR TO ALPHA-STR;

ELSE IF CHAR-STR IS NUMERIC,
MOVE CHAR-STR TO NUM;
DISPLAY NUM;

ELSE NEXT·SENTENCE.

IF NUM = OLD-NUM GO TO RE-SET.

IF ALPHA-STR NOT= "TEST"
ADD 1 TO ERROR-CNT.

IF NUM < LIMIT, ADD 1 TO NUM.

IF NUM IS LESS THAN LIMIT
ADD 1 · TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAGE 168

"

The INSPECT Stati!ment

Th• INSPECT statement. provides the abilitij to tally (Format 1),
replace. <Format 2), or tallv and replace <Format 3) occurrences of
single characters or groups of characters in a data item.

FORHAT.1

INSPECT identifier-1

TALLYING ide-ntifitt1"-2 FOR <<ALL > {ident-ifier-3>>
------ {literal-1 >

{{LEADING} >

< CHARACTERS >
C<BEFOR-E> INITIAL {identifier-4l}J

------ {literal-2 >
<AFTER>

FORMAT 2·

INSPECT identifier-!

REPLACING <<ALL > {identifier-5}} BV {identifier-6}
-------- <literal-3 > {literal-4 >

. <<LEADING> >

<<FIRST >

{ CHARACTERS

)

}

[(BEFORE} INITIAL {identifier-7))
------ {literal-5 >

<AFTER>

PAGE 169

FORNAT 3

INSPECT· id•nti.fti•r-1

TALLYING identifier-2 ~OR <<ALL· > Cidentifier-3>>
Cliteral-1 >

· < <LEADING> ·
·. --------·
< · CHARACTERS

t<BEFORE> INITIAL (identifier-4>]
----- <literal-2 >·

<AFTER>

>
)

REPLACING .<<ALL > (identiftier-5>> BY (identifier-6}
---------· <literal-3 > (literal-4 >

<<LEADINO> >

.<· CHARACTERS >

[(BEFORE> INITIAL {identifie1'-7}l
------ (literal-5 >

<AFTER>

Identifier-1 must reference either a group item or any category of
, elementary item, described <either implicitly or explicitly) as

usage_ is DISPLAY.

Identi~ie-r-3 . . . identifier-n
alphabetic, alphanumeric
implicitly or explicitly) as
cha'l'ac ter.

must reference either an elementary
or numeric item described (either
usage is DISPLAY and a size of one

Each literal mav be either a figurative constant (which is tt-eated
as a one-character data item> or a nonnumeric literal one
character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection h,hich includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallying and/o'I' replacing> begins at the
leftmost character position of the data item referenced bV
identifier-1, regardless of its class, and proceed~ from left
to right to the rightmost character position as described in
general rules 4 through 6.

PAQE 170

.]

.2. Fo'I"' use in the INSPECT statement, the contents ol the data
item referenced by identifier-1, identi,ier-3, identifier-4,
i.dentifieT-5, i"dentifier-6 or identifier-7 will be treated as
follows:

3.

•• · If any· of identif ieT'-1, i dent if i er-3, identifier-4,
identifier-5, i dent if i er-6-, 01" identifier-7 are described
as alphanumeT'ic, the INSPECT statement treats the contents
of each such·identifieT' as a character-string.

b. If anlj of identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6-, or identifier-7 are described
as alphanumeric edited, numeric edited or unsigned nvmeric,
the data item is inspected as though it had been redefined
as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the redefined data
item.··

c. If any of the identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are described
as signed numeric, the data item is ins,ected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
applied. ·(See the MOVE statement.)

In general rules 4 through 10, all references
literal-2, liter~l-3, literal-4, and literal-5
to the contents of the data item referenced by
identifier-4, . identifier-5, identifier-a, and
respectively.

to liteT'al-1,
apply equally
identifier-3,
identifier-7,

·4_ During inspection of the contents of the data item referenced
by identifier-1, each properly matched occurrence of literal-1
is tallied <Formats 1 and 3) and/or each properly matched
occurrence of literal-3 is replaced by literal-4 <Formats 2
and 3>.

5. The comparison operation to determine the occurrences of
literal-1 to·be tallied and/or occurrences of literal-3 to be
Teplaced, occurs as follows:

a. T~e character specified by literal-1, literal-3 is compared
to successive characters, starting with the leftmost
character position in the data item referenced by
identifier-1. Literal-1, literal-3 and that portion of the·
contents of the data item referenced by identifier-1 match
if, and only if, they are equal.

PAGE 171

· b. If . no match occuTs in the coapa,-ison oft
lit•ral-3, the comparison is. repeated starting
next cha,-acter position of identifier-1.

literal-1,
with the

c_ Wheneve~ a match occurs, tallying and/or ~eplacing takes
place as descTibed in general Tules 8 through 10. The
character position in the data item referenced by
identifier-1 immediately to the Tight o, the character
position that c~used the match is now considered to be the
l•ftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with
literal-1, literal-3.

d .. The comparison. operation continues until . the rightmost
character position of the data item Teferenced by
identifier-1 has participated in a match or has been
c~nsidered as the· leftmost character position. When this
occuTs, inspection is terminated ..

e. If the CHARACTERS phTase is specified, an implied
one-chaTacter operand paTticipates in the cycle described
in paragrapns 5a through ,d above, e1cep~ that no
comparison to the contents of the data item referenced bv
identifier-1 takes place. This implied character is
considered alwavs to match the leftmost character of the
contents of the data item referenced bg identifier-1
participating in the current comparison cycle.

·6 .. The comparison operation defined in g~neral rule 5 is affected
bQ the BEFORE and AFTER phrases as follows:

a. I.P the BEFORE and AFTER phrase is not specified, literal-1,
literal-3 or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in
general rule 5.

\
PAQE 172

'

l

b. If the BEFORE phrase· is. specified. the associated
li~eral-1, literal-3 OT' the implied operand of the

·cHARACTERS phrase paT'ticipates onl'J in those comparison
cvcles which involve that portion of the contents of the
data item ·referenced by identifier-! from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced bv identifier-1. The position of
this first occurrence is determined before the first cvcle
of the compari4on operation described In general rule 5 is
begun. If, on •~I comparison cycle, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase is not

· eligible to participate, it is considered not to match the
contents of the data item referenced by identi fier-1. If
there is. no occurrence of liteTal-2, literal-5 within the
contents of tbe data item referenced bv identifier-IT its
associated liteT'al-1, literal-3, Ol' the implied operand o-F
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

~- :r the ArT::n •p~,,asc: is specif.ied, the ossociatsd liteial-"·1,
literal-3 or the implied operand of the CHARACTERS phrase
ma, participate onlq in those comparison cycles which
in~olve that portion of the contents of the data item
referenc~d by ·identifier-1 from the character position
immediately to the right of t.,,e rightmost character
position ·of the first occurrence of literal-2, literal-5,
within ·the contents o, the data item refeT'enced by
identifier-1 and the rightmost character position of the
data item referenced by identifier-1. The position of this
first occurrence is determined before the first cycle of
the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-1, literal-3,
or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item re-flerenced by identifieT'-1. If
there is no occurrence of literal-2, literal-5 within the

··contents of! the data item referenced by identifier-1, its
associated literal-1, literal-3, or the implied operand of
the · CHARACTERS phNuie is never eligible to participate in
the comparison. operation.

FoT'mat 1

7. The contents of the data item referenced by· identifie1'-2 is
not initialized by the execution o.P the INSPECT statement.

PAGE 173 .

8. The rules for tallying are as follows:

• a. If the ALL phrase is specified, the contents of the data
item refer~nced by identifier~2 is incr~mented by one (1)
for each occurrence of· literal-1 matched within the
contents of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the c: ontents of the
data item referenced by identifier-2 is incremented by one
(1) for each contiguous occurrence of literal-1 matched
within the contents of the data item referenced bij
identifier-1, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cvcle in which literal-1 wa.s eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of th~
data item referenced by identifier-2 is
(1) · for each chal"acter matched, in the
rule 5e, within the contents of the data
identifieT'-1.

incremented by one
sense of general
item referenced by

Format 2

9. The rules fol' replacement are as f~llows:

a. When the CHARACTERS phrase is specified,
matched, in the sense of general rule 5e, in
of the data item referenced by identifier-1
l i teT'a 1-4.

each character
the contents

is replaced by

b. When ALL is specified, each occurrence cf literal-3 matched
in the contents of the data item referenced by identifier-1
is replaced bg literal-4.

c. When LEADING is specified, each contiguous
literal-3 matched in the contents of
referenced by identifier-1 is replaced
provided that the leftmost occurrence is at
comparison began in the first comparison
literal-3 was eligible to participate.

occurrence o,
the data item
by literal-4,
the point where
cycle in which

d. When FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item
referenced by identifier-1 is replaced by literal-4.

PAGE 174

l

Fo,-mat 3

10. A FoT'mat 3 INSPECT statement is interpreted and executed as
though t1110 successive INSPECT stateautnts specifying the same
id•ntifier~1 had been 111ritten with one statement being a

· Format 1 · statement 111i th TALLYING phrases identical to those
.apecified in the Format 3 statement., and the otheT' statement
b•ing.a Format 2 statement with REPLACING phrases identical to
those spec-ified in the Format 3 statement. The general rules
given for matching and counting applv to the_ FoT'mat · 1
statement •nd· the geneT'al -rules given· foT' matching and
T'eplacing appl~ to the Format 2 statement.

PAGE 175

INSPECT Examples:

INSPECT word TALLYING count FOR LEADING •Lrt BEFORE INITIAL

Where word=LARGE, count=L
WheT'e word=ANAL YST, c ount=O.

"A 11 I

INSPECT.word TALLYING count FOR LEADING nA 11 BEFORE INITIAL 11 L".

Where word=LARGE, count=O.
Where word=ANALVST, count=1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING 0 AII BY
"E" AFTER INITIAL "L O •

Whet'e word=CALLAR, count=2, word=CALLER.
Where woTd=SALAMI, count=!, word=SALEMI.
Where word=LATTER, count=l, word=LETTER.

INSPECT wora Rt::J-~1..ACING ALL "A" BY "G" BEFORE INITIAL "X".

WheT'e word=ARXAXi word=GRXAX.
Where word=HANDAX, word=HGNDGX.

INSPECT woT'd TALLYING count FOR CHARACTERS AFTER INITIAL ".J"
REPLACING ALL nAn BY 11 8 11 •

Where word=AD-./ECTIVE, count=6, word=BDJECTIVE.
Where word=JACK, count=3, word=.JBCK.
Where word=.JU"1MAB, count=5, word=JU-./MBB.

INSPECT. woT'd REPLACING ALL "W" BY "G" AFTER
INITIAL "R".

Where word=RXXBGWY, word=RXXBGGV.
Where word=YZACDWBR, word=YZACDWBR.
Where word=RAWRXEB, word=RAGRXEB .

. INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 12 XZABCD
word after: BBBBBABCD

PAGE 176

]

The NOVE Statement

..
The·MOVE statement tT'ansfe-rs data, in accordance with the rules of
editing, to one or mol'e data areas.

FORNAT 1

NOVE (identifie-r-1) TO identifier-2 [,identifieT"-3l ...

<literal >

FORMAT 2.

MOVE <CORRESPONDING> identifie,--1 TO identifie-r-2

<CORR >

ldenttfier-1 and literal-1 · TepPesent the sending areaJ
identifier-2, identifieT'-3, ... , T'epresent the receiving area(s) .

. An index data item cannot appear as an· ope-rand .of a NOVE
·statement.

The data designated bv literal-1 ol' identifier-! is moved fiT"st to
identifier-2, • then to identifier-3, The -..ules Teferl'ing to
identifie,--2 also applv to the othe'r 'receiving aT"eas. Anv
subscripting OT' indexing associated with identifier-2, ... , is
evaluated immediately befoT'e the data is moved to· the respective
·data item. ·

Anv- subscT"ipting or indexing associated with identifier-1 is
evaluated only once, immediately before data is moved to the first

.of the r•ceiving operands. The result of the statement

is e~uivalent to:

HOVE a (b) TO temp
HOVE temp TO b
HOVE temp TO c (b).

PAGE 177

Anv MOVE in which the sending and T'eceiving items are both
elementaTIJ items·. is an elem&ntarv move. EveT'U elementarv item]
belongs to one of the following categories: numel'ic, alphabetic,
•lphanumeric, numeT'ic · ttdited, alphanumeric edited. These
categories are dttscribed in the PICTURE clause. Numeric literal•
belong to the category numttric, and nonnumeric literals belong to
th• category alphanumeric. The figurative constant ZERO belongs to
th• categorv numeY"ic. The figul"ative constant SPACE belongs to the

· category alphabetic. All other figurative constants belong to the
· cat•gory alphanumeric. ·

The foliowing-rules apply to· .an 1tle11enta-ry move between .these
catego-ries: ..

,1. The ,-igu,-ative constant SPACE, a numeTic
alphanumeric edited, or alphabetic data item must
moved to a numeric ~r numeric edited data item.

2. A _numeric literal, the figurative constant ZERO,
.data item or a numeric edited data item must not
to an alphabetic data item.

edited,
not be

a numeric
be m~ved

3. A non int&ger numeric literal or a non intege~ numeric data
item must- not be moved to an alphanumeric or alphanumeric
edited data item.

4. All other elementary moves are legal and are
.according to the rules given below.

pe1'forme-d

Any necessary conversion
representation to another
moves, along With any
item:

of data from one form of internal
takes place during legal elementary

editing specified for the receiving data

1. ·when an· alphanumeTic edited or alphanume-ric item is a
-receiving item, alignment and any necessary space-filling
take• place as defined under Standa-rd Alignment Rules. If

· the - size. of the sending item is gT'eater than the size of
th• receiving item, the excess characters are truncated on
the right afte1' the receiving item is filled. If the
sending item is described as being signed nume1'ic, the

· ope1'ational sign will not be moved; if the operational sign
occupitts a separate. chat'acte'I' position (see the SIGN
clause>, that character will not be moved and the size of
the sending item will be considered to be one less than its
actual size (in tel'ms of standard data fol"mat characters>.

PAGE 178

2. When • numeric· or numeric ·edited item is the receiving
.item, alignment- by decimal point and any necessary
. zero-~illing takes place as defined under the Standard
Alignment Rules .except where zeroes are Peplaced because of
editing re~uirements ..

When a signed item is the
sending item ts placed in
clause>. Conv·e-rsion of the

·pl•c•. as necessarv. If
~ositiv• si~n is generated

receiving item,· the sign of the
the receiving item. (See the SJQN
representation of the sign takes
the sending item. is unsigned, a
for the receiving item.

When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

When a. data item described as alphanumeric is the sending
item, data is moved as if the sending item were described
as an un•igned numeric integer.

3. When a receiving field is described as alphabetic,
JUstific~tien =nd eng ne~essary space-filling takes place
as defined under the Standard Alignment Rules. If the size
of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the
right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move, except
that there· is no conversion of data from one form of internal
representation .to another. In such a move, the receiving area will

· be filled without consideration for the individual elementarv or
group items contained within either the sending or receiving area,
except as noted in the OCCURS clause.

'When a sendin~ and receiving item share a part of their storage
areas, the result of the execution of such a statement is
undefined!

The CORRESPONDING Phrase

-when· · the CORRESP-ONDINQ ph1"ase is specifi1td, data items in
identifier-1-are moved to corresponding data items in identifier-2
according to the following rules:

A data item in identifier-1 and a data item in identifier-2
are not designated bv the kev word FILLER and have the same
qualifiers up to, but not including, identifier-1 and
id ent if i eT:-2.

At leas-t_one of the data items is an element.arv data item.

The d•s~ription of identifier-! and identifier-2 must not
con-tain level-numbe-r 66, 77, or 88 .01". tbe USAGE IS INDEX·
clause.

A data item. that is subordinate to identi~ier-1 or
'identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as. those data items
subordinate· to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier-2 mav have REDEFINES or OCCURS clauses or be
subo'rd inattt to .data items with REDEFINES 01" OCCURS clauses.

PAGE 180

]

Data in the following chal"t summarizes ·the.legality of the val"ious
tvpes of MOVE statements.

--~---------~----
I
I
r
l

CATEGORY OF RECEIVING DATA ITEM t,

:------~--------~--------------------~--:
f IALPHANUMERICfNUMERIC INTEGER CATEGORY OF

SENDING
DATA ITEM

I f EDITED I NUMERIC NON-INTEGER I

' IALPHABETIC:ALPHANUMERICINUMERIC EDITED
l••••===========•=•===•l==========l======•====l================•===I
I ALPHABETIC I YES I YES NO I
1-~------~-------------1-------~--;---------1--------------~----:
I ALPHANUMERIC YES YES : .YES
·1~-------------------- ----------:---------1---------------~--1·
IALPHANUMERIC EDITED YES YES ' NO I

1--------------------- ----------1----------: --------~--------~--1
I IINTEOER. NO YES f YES
&NUMERIC .1------------- ------~---: --.----.------ :------------~-------1
1 I NON-INTEGER NO NO t . YES
:~--------------------- ----------1----------r~------------~-----:
INUMER-IC EDITED NO YES NO

---------------------~--
MOVE Examples

MOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM

MOVE "MARMACK INDUSTRIES., TO TITLE-HEADER.

MOVE PERSON IN FILE-RECORD TO
PERSON OF ALABAMA CI-A OF ALABAMA>,
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM-ED

MOVE TABLE-ELT <N, 1, M) TO NEXT-ENTRY
PREVIOUS-ENTRY

MOVE -36.7 TO DEFICIT.

MOVE QUOTES TO SECTION-DIVIDER .

. MOVE ZERO TO COUN-TER

MOVE ZEROES TO COUN-TER.

PAGE 181

·The NULTIPLY ·Statement

Th• MULTIPLY statement causes numeT'ic data items to be multiplied
and stoT'es the result.

FORMAT 1

MULTIPLY {identifiey,-1)

(literal-1 >

BY identifier-2 CROUNDEDJ

[10N SIZE ERROR imperative-statement]

FORMAT 2

MULTIPLY {ideritifier-1} BY. (identifier--2>

<literal-1 } <literal-2 >
OIVING -identifier-3 CROUNDEDl

[;·ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-1 or literal-1 is
bv the value of identifieT'-2. The value of the
(identifier-2> is replaced by this product.·

In FoT'mat 2, the value of identifier-1 or literal-1 is
by identifier-2 or literal-2 and the T'esult is
i dent if i er-3.

multiplied
multiplier

multiplied
stored in

Each identifier must
that in Format 2
T'efeT' to eitheT' an
-numeric edited item.

refer to a numeric elementary item, except
the identifier following the word GIVING must
elementary numeric item or an elementary

Each literal must be a numeric literal .

. PAGE 182

.)

The ROUNDED Phrase

The MULTIPLY statement may optionally· include· the ROUNDED phrase.·

If,· after decimal point alignment,- the number of places in the
fpa~tion of the result of an arithmetic operation is greater than
the· number .of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resul-tant-identifier. When -r~undi~g is re~uested, the
absolute value of the resultant-identifier is increased by one
(1) when~ver the most significant digit of the excess is greater
than or e~ual to five (5). ·

When the low~order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier; rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for site error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size eT'ror
is. detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

If the SIZE ERROR phra~e
condition exists, the
undefined.

is not
value of

specified and a size error
the resultant-id~ntifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is executed.

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

·MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVINQ INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE OTO ECONOMY-RATING.

PAGE 183

· . Thct OPEN· Statement (Sequential I-O>

Th• OPEN statement initiates the processing al sequential f!iles.

FORMAT

OPEN <<INPUT {file-name;..1 [WITH NO REWIND] > ... > ... -- --- ------
<OUTPUT (file-name-2 CWITH NO REWIND] >.· .. > ... ~----- ~----
<I-O (file-name-3 >...)

<EXTEND < f i 1 e-name-4 >. . .) ... > ...
.... ------

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
,node.

· The successful execution of an OPEN statement makes the associated
record a.rea available to the program.

The files ~e~erenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file,
either explicitly or implicitly.

An OPEN statement must be successfully executed prior to the
execution· of anv of the permissible input-output statements. In
the Permissible Statements Table below, 1 X' at an intersection
.indicates that th2 specified statement, used in the sequential
access mode, mav be used with the sequential file organization and
open mode given at the top of the column.

PAQE 184

l

____ _. _ ___,. ___________________ ,_, _________________ ..,. ________ _
l Open Kade

I ----~~~----------------------------~-:
:statement Input I Output I Input-Output I Extend t
1--~--~-~---- ------1----~--1---------~-~--,~----~--1
IREAD X t x· t t .

:--~--------- ------1--~~----1---~--------1---~----:
IWRITE X I . X
1-~---------- ------1--------:------------1--------:
&REWRITE l X

Permissible Statements Table

A file mav be·opened with the INPUT, OUTPUT, EXTEND, and I-O
phrases in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded bg the execution of
a CLOSE statement, without the LOCK phrase, for that file.

·Execution of the OPEN statement does not obtain or release the
first data record~

The file· description
file-name-4 must be
created.

ent:rv for
ectuivalent

file-name-1, file-name-3 or
to that used when this file was

The execution of an OPEN statement
specified FILE STATUS data item,
file-name-1 . . . to be updated.

The INPUT Phrase

causes the
if any,

value of
associated

the
with

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the·
current record pointer is set such that the next executed READ
statement for the file will result in an AT END condition.

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

PAGE 185

The EXTEND Phrase

When the EXTEND phT'ase is specif.ied, the OPEN statement positions
the file immediately following the last logical recoT'd.of that
file. Subsequent WRITE statements referencing the file will add
records to the file as though the file has been opened with the
OUTPUT. phrase.

The EXTEND phrase and NO REWIND phrase can be used only for·
setuential files. The EXTEND phrase must not be specified for a
file whose device-type is INPUT.

When the EXTEND phT'ase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN
statement includes the following:

The b•ginning file labels are p·rocessed only in the case o.P a
single reel/unit file .

. Processing then proceeds as though th• file has beeri op•ned
~ith the OUTPUT p~r~se.

The I.;..O Phrase•

The 1~0 phrase permits the opening of a mass storage file for both
input and output operations. Since this phrase implies the
.existen~e of the file, it cannot be used if the mass ~torage file
is being initiall1 created.

The I-0 phrase can be used only for mass storage files (files
assigned to the RANDOM device-type).

When. the I-0 phrase is specified and the LABEL RECORDS clause
indicates that label records are pT'esent, the execution of the
OPEN includes the following:

The labels are checked.

New labels are written.

The OPEN statement sets the current record pointer to the first
1"ecord currently existing in the file. If no reco1"ds exist in the
file, the current recot'd pointer is set such that the next
executed READ statement for that file will result in an AT· END
condition.

PAGE 186

l

The NO REWIND Phrase

The NO REWIND phrases can only be ~sed with sequential singl
reel/unit files. Both phrases will be ignored if they do not apply
to the storage media on which the file resides.

lf the storage medium for the file permits rewinding, the
following rule applies:

. When neither the EXTEND nor the NO REWIND phrase is specified,
execution of. the OPEN statement causes the file to be
positioned at its beginning.

.When the NO REWIND phrase is specified,
statement does not cause the file to be
must be already positioned at its
execution of the OPEN statement.

PAGE 187

execution of the OPEN
repositioned; the file
beginning prior to the

· Th• OPEN Statement <Relative and Indexed I-0>

The OPEN statement initiates the processing of aass sto-r.1ge files.

FORMAT

OPEN <<INPUT <file-name-1 > ... > .. .

(OUTPUT <file-name-2 > ... > ... ·

<I-0 <.Pile-name-3 > ... > ... > ...

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of the OPEN statement
associated record area available to the program.

makes the

The files referenced in the OPEN statement need not all have the.
same organization or access.

)

Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, J
either explicitl~ or implicitly ..

A file may be opened ldith the INPUT, OUTPUT, and I-0 phrases in
the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for
that same file must be preceded by the execution of ~-CLOSE
statement, without the LOCK phrase, for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

If label records are specified for the file, the beginning labels
are .processed as follows:

When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with
the System conventions for input label checking.

When the OUTPUT phrase is specified, the execution of the OPEN
statement.causes the labels to be written in accordance with
the System conventions for output label WT'iting.

PAGE 188

The behavioT of the OPEN statement when label Tecords are
specified but not present, or when. label records are not
specified but are present, is undefined.

The file description entry for file-name-1 .or file-name-3 must be
eq,u,ivalent to that used when this file 111as cT"eated.

The ~xecution of the OPEN statement• causes the
specified FILE STATUS data item, if anv~
file~name-1 ... to be updated.

value of
associ.ited

t·he
with

An OPEN statement must be successfully executed prior to the
execution of anv of the permissible input-output statements. In
the Permissible Statements Table below, 'X' at an intersection
indicates that the specified statement, used in the access mode
given fo~ that row, mav be used with the open mode ~iven at the
top of the column.

PAGE 189

-----------------------~-----------~-------------~
1 1. Open Node ·.]
t. :---~~-----------------:
IFile Access: f r · I

. I Node Statement IInputlOutputlinput-Outputl
:~---~-----1----~-----:-~---1------1---------~-1
I Sequential
I
I
I
I

' I
. I

I -READ X I X
1-----------1-----1-~----1-----~------:
I WRITE X :
1----.-.-------:----~:------1-------------1
I REWRITE l I X
1-----------:----1-----~1-----------1
I START · X I ' X
i .---------------1------1------1----------- r
I DELETE I 1 . X : .

1~-------~--1-----------1-----:-----:------~----~1
IRandom
I
I
I .

I
I

I
:
I

I READ I X : t X f·
1-----------:-----:------1----~------1
I WRITE I X X
i----~-----1-----·----~-,--~~-~------J
t REWRITE X 1.
; ----------..:..- , ----- ------; ----·-------- r
I START
:-----------,-~--
I DELETE

.. . .
~-----:------------:

I X I
:~----------:-----------1----- ---~--1------------1
IDvnamic I READ I X I X
I 1-----------: ----- -----1---------~---:
I I WRITE X J X
I 1-----------•-----,------1------------1
I I REWRITE I X
I 1----------- -----1------1------------:·

. I
I I START X : X

:---------- ----1-----~:------------:
I DELETE t X

. ------------~-------------------------------------
Permissible-Statements Table

The INPUT Phrase

For files being opened ~ith the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed Format 1
READ statement for the file ~ill result in an AT END condition.

PAQE 190

.Th• OUTPUT Phrase

Upon successful execution of an OPEN. statement with the OUTPUT
phr••• sp•cifi•d, • file is created. At that time the associated
fil• contains no data records.

Th• 1-0 Phrase

For. files being opened with the I-0 . phrase, the OPEN statement
sets the current record pointer to the first record currently
existing 111ithin the file. If no records exist. in the file, the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAQE 191

The PERFORM Statement

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution.of the specified procedure is complete.

FORMAT 1-

PERFORM procedure-name-1 [{THROUGH} proceduTe-name-2J

<THRU. >

FORMAT 2

PERFORM procedure~name-1 [{THROUGH> proceduT'e-name-21

<THRU }

{identifier-1> TIMES

<integer >

FORMAT 3

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

<THRU >

UNTIL condition-1

PAQE 192

FORMAT 4

PERFORM proceduT'e-name-1 t{THROUQH} proceduTe-name-2J

<THRU. >

VARYINQ· {identifier-2> FROM {identifiel"-3) ---------
•<index-name-1> <index-name-2>

<liteT'al-1 >

BY {identifier-4>. UNTIL condition-t

(liter•l-2 >

CAFTER {identifier-5> FROM {identifier-6>

.(inde x-name-3} <index-name-4}
<literal-3 >

BY {identifier-7) UNTIL condition-2

(lite-ral-4 >

[AFTER {identilier-8) FROM {identifier-9}

<index-name-5> <index-name-6}
(literal-5 >

BY {identifie~-10) UNTIL condition-3ll

(literal-6 >

Format ·1 is the basic PERFORM statement. A procedure referenced by
this tvpe of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement.

Format 2 is the PERFORM ... TIMES. The procedures are peT'formed the
number of times specified by integer or by the initial value of
the data item referenced by identifier-1 for that execution. If,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier-1 is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following -the execution of the
pTocedures the specified number of times, contTol is transfeTred
to the next executable statement following the PERFORM statement.

PAQE 193.

During ·execution o, the PERFORP1 ·statement, re,erences to
tdentifier-1 cannot alter the number of times the procedures are ,o _be executed- from that which was indicated bV the initial value
of .. identifier-1.

FoPmat 3 is the PERFORM ... UNTIL The sp-ecified procedures are
performed unti.1 the condition specified blJ the UNTIL ph1'ase is
true. When the condition is true, control is transfe1'red to the
n.ext executable statement afte-r the· PERFORM statement. If the
co.ndition · is tTue when the PERFORM statement is entered, no
transfer to procedure-name-1 takes place, and control is passed to

. the next executable statement fol lowing the PERFORM statement.

-Format 4 is the PERFORM ... VARYING. This variation of the PERFORM
statement is used to augment the values referenced bv one or more
-identifiers or index-names in an orde1'1V fashion du1'ing the
execution of a .PERFORM statement. In the fol lowing discussion,
everv reference to identifier as the obJect of the VARYING, AFTER
and.FROM (current value> phrases also refers to index-names. When
index-name appears in a VARYING and/or AFTER phrase, it is
initialized and subsequently augmented (as described below>
according to the rules of the SET statement. When index-name
appears in the FROM phrase, identifier, when it appears in an
associated VARYING or AFTER phrase, is initialized according to
the rules of the SET statement; subse~uent augmentation is as
described below.

In Format 4, when one identifier is varied, identifier-2 is set to
the value of Iiteral-1 or the current value of identifier-3 at the
point of initial execution of the PERFORM statement; then, if the
condition of the UNTIL phrase is false, the se~uence of
procedures, - procedure-name-1 through procedure-name-2, is executed
once. The value of identifier-2 is augmented b" the specified
increment or decrement value (the value of identifier-4 or
literal-2) and condition-! is evaluated again. The cvcle continues
until this condition is true; at which point, control is
transfe1'red to the next executable statement following the PERFORM
statement. If condition-! is true at the beginning of execution of
the PERFORM statement, control is transferred to the next
executable statement following the PERFORM statement.

Each identifier represents a numeric elementary item described in
the Data Division. In Format 2, identifier-1 must be described as
a numeric integer.

Each literal represents a numeric literal.

Th• words THRU and THROUOH are •~uivalent.

PAOE 194

If •n index-name is specified in the VARYING or AFTER phrase,
then;

.If

The identifier in the associated FROM and BY phrases must be
an integer data item.

The literal in the associated FROM phrase must be a positive
integer.

The literal in the .aissoc i ated BY phrase .must be a non. JeTO

integer.

an index-name is specified in the FROM phrase, then:

The identifier in the associated VARYING 01" AFTER phrase must
be an· i nteg eT. data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase must be an integer.

Literal in the BY phrase must.not be zero.

CQndition-1, condition-2,
expression.

condition-3 mav be any conditional

Whan procedure-name-1 and procedtire-name-2 are both specified and
either is the name of a procedure in the declarative section of
the program then both must be procedure-names in the same
declarative section.

The data items referenced by identifier-4,
identifier-10 must not have a zero value.

identifier-7, and

If an index-name is specified in the VARYING or AFTER phrase1 and
an identifier is specified in the associated FROM phrase, then the
data item referenced bv the identifier must have a positive value.

When the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases when a transfer of control to
the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

PAGE 195

If procedure-name-1 is·• paragraph-name and procedure-name-2
is not specified •. then the return is after the last statement .)
of procedu~e-name-1.

If procedure-name-1 is a section-name and procedure-name-2 is
not specified, then the return is after the last statement of
the last paragraph in procedure-name-!.

If procedure~name-2 is specified and· it is a paragraph-name.
then the return is after the last statement of the paragraph.

If procedure-name-2 is specifi~d and it
then the return is after the last
paragraph in the section.

is a section-name,
statement of the last

There is no necessary relationship between procedure-name-! and
procedure-name~2 except that a consecutive sequence of operations
is to be execute, beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, QO TO and PERFORM
statements m•v aecu~ b~tween p~o~ed~~~-n~~e-1 and the end ot
procedure-name-2. If there are two or more logical paths to the
return point, then procedure-name-2 may be the name of a paragraph

· consisting of the EXIT statement, to which all of these paths must
lead.

If control passes to these procedures bV means other than a
PERFORM statement, control will pass through the last statement of . J
the procedure to the next executable statement as if no PERFORM
statement mentioned these procedures .

. PAOE 196

ENTRANCE
I
V

--·--..... ----------------------
:set identt,iar-2 equa1~ol
I current FROM value

I
V

/---------\ True ---------------> I Condition-I :-----~-----> Exit
t
I
I
I
J
I

. I
I

,_.., _______ ,
I
V False.

----~---~--------~--------
t Execut.e procedure-name-1:
I THRU procedure-name-2 I

-----------~--------------
I

V
l ~----------------~--·--&--~-:------------I Augment identifie1"-2 witht

a current BY value :

Flowchart for the VARYINQ Ph~ase of a PERFORM Statement Having One
Condi ti.on.

PAQE 197

In. Format 4, when two identifiers are varied, identifier-2 and
identifier-5 are set to the current value of identifier-3 and
identifier-6, respectively.

After the identifiers have been sel, condition-1 is evaluated; if
true~ control is transferred to the next executable statement; if
false1 condition-2 is evaluated. If condition-2 is false,
procedure-name-1 through procedure-name-2 is executed once, then
identifer-5 is augmented by identifier-7 or literal-4 and
condition-2 is evaluated again. This cycle of evaluation and
augmentation continues until this condition is true. When
condition-2 is true. identifier-5 is set to the value of literal-3
or the current value of identifier-6, identifier-2 is augmented by
identifier-4 and condition-I is re-evaluated. The PERFORM
statement is completed if condition-I is true; if not, the cycles
continue until condition-I is true.

During the executi•n of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-1), the BY variable (identifier-4), the AFTER variable
(identifier-5 and index-name-3>, or the FROM variable
(identifier-3 and index-name-2) will he taken into conside•atjnn
and will affect the operation of the PERFORM statement.

PAQE 198 ·

ENTRANCE.
. I
V

ISet identifieT-2 and identifieT-51
I to current FROM values I
-----------------------------~---

V

/---------~---\ T~u•
·------------>f Condition-1 I------------_;_> Exit
I \-------------/
I I
I V False
I /------------\. TTue
l ___ _. _______ "".'>I Condition-2 1--------------
t I \-------------/· :
I l l I
I I V False V
I I~------------------~~-~---- ----------------------
1 I· IExecute proce~ure-name-11 fSet identifier-5 to itsl
I I ITHRU pTocedu,-e-name-2 I I cur,-,mt FRON value I
I I•------------------------- ------------------------
1 I I l ·
I I V V

I I---------------------~----- ------------------~------
t ~-:Augment identifier-5 with I IAugment identifier-2 with:

. I I CUTTent BY value I CUT'Tent BY value I
I ----------------------~---- -------------------------
1 (

--
Flowchart for the VARYINQ Phrase of a PERFORM Statement Having T~o
Condi.ti ons. ·

PAGE 199

ENTRANCE
I
V

Set
I identifier'.'""2, identifier-5, :
t identifier-a :
r to c-urrent FROM values

J
V

/----------\ True ------------->J Conditon-1 :---------------;...-> Exit
: \----------/
I I False

V
/-----------\ True ----------> I. Condit i on-2 1----------------------------"'."
\-----------/

t False
V

I !-----------'.
l t

t ..;.--------> I . Condit i on-3 1-----------

' : I f \-----------/ I
I : False

f • l ,. I V V V
I ·• ,

t Execute Set Set
• f I t I lprocedure-name-lf :identifier-a fidentifier-5
l ' I ITHRU procedure- I :to its curT'ent: :to its currentl

I name-2 : FROM value FROM value
1

. '

' I
: V V V
f

t. I I Augment Augment I f Augment
: I lidentifier-8 withl lidentifier-5 withl I identifier~2 with:

I current BY valuel I current BY valuel I current BY value I
t

' l

Flowchart lor the VARYING Phrase of a PERFORM Statement Having
Three Condition~.

PAGE 200

l

At the ter·mination of the PERFORM statement identifier-5 contains
the current value of identi.Pier-6. Identifier.:_2 has a value that
exceeds the last setting by an increment or decrement value,
unless condition-1 was true .when the PERFORM statement was
entered, in •hich case identiflier-2 contains the current value of
identi f i er-3.

When two identifiers are varied, identifiet--5 goes through a
complete cvcle <FROM, BY, UNTIL>· each time identifie-r-2 is .va-ried.

For three identifiers the mechanism is the same as for two
identifiers except that identifier-a goes th-rough a complete cycle
each time that identifier-5 is augmented bV identifier-7 or
literal-4, which in turn goes through a complete cycle each time
identifier-2 is varied.

After the completion ofl a Format 4 PERFORt1stateaent, identifie-r-5
and t·dentifier-8 contain the current value of identifier-6 and
identifier-9 respectively. ldentifier-2 has a value that exceeds
its last used setting by one increment o-r decrement value, unless
condition-I is true when the PERFORM statement is entered, in
which case identifier-2 con~ain~ th~ ~urrent value of
identifier-3.

If a se(luence of statements referred to bv a PERFORM statement
includes another PERFORM statement, the se~uence of procedures
associated with the included PERFORM must itself either be totally
included· in, or totallV excluded. from, the logical se4:tuence
referred to by the first PERFORM. Thus an active PERFORM
statement,. whose execution point begins within the range of
anotheT active PERFORM statement, must not allow control to pass
to the exit of the other active PERFORM statement; furthermore,
two or more such active PERFORM statements mav not have a common
exit. See the valid illustrations below.

x PERFORM a THRU m

a----------------------------
d PERFORM f THRU J

h

. -----------------------------
f ----------

.J ----------

PAOE 201

x PERFORM• THRU m

a--~---~--------------------
d PERFORM f THRU J

f -----------J ,... _________ _

. I
I
:
:

ffl -----------~---------------

x PERFORM a THRU m

. -----~--------------------
., ---------. --------,----~--------~--
J ----------

d PERFORM f THRU J

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range. in addition to anv
declarative· sections whose execution is caused within that range,
onlg one of the following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs whollg contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range, in addition to anv declarative sections
whose execution is caused within that range, onlv one of the
following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs whollv contained in the same
· independent segment as the PERFORM statement.

PAGE-2O2

Th• READ Statement (Se~uential I/0)

Th• READ statement mak•s available the next logical record fl'om_a
fi la.

FORMAT

READ file-name RECORD [INTO identifier]
. ------

[1AT END imperative-statement]

The associated file must be open in·the INPUT or I-0 mode at the
time this statement is executed.

The 1"ecord to be made avai.lable by the READ statement_ is
determined as follows:

If-the current record pointer was positioned bv the execution
of the OPEN · statement, the reco-rd pointed to bv the current
record pointer is made available;

If the current ~ec?rd pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

Wh-en the -logical 'l'ecords of a file are described with more than
one· record description the contents of any data items which lie
beyond the range of the current data record are undefined at the
completion of the execution of the READ statement.

If, at the time- of execution of a READ statement, the position of
the curTent record pointer for that file is undefined. the
execution of that READ statement is unsuccessful.

Following the unsu~cessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined~

PAGE 203

The INTO Phrase

If .the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was

· unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by thier rectird
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area.

The AT END Phrase

If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized the following actions are
taken in the specified order.

A value is. placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, flor this
file and that procedure is executed.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement follo•ed by tbe execution of a
successful OPEN statement for that file.

The AT END phrase must be specified i~ no applicable USE procedure
is specified for file-name.

PAGE 204

The READ Statement <-Relative and Indexed l-0)

The READ statement makes available a specified record from a mass
stot"age fl i le.

FORMAT 1

READ _f'ile-name CNEXTJ RECORD CWITH NO LOCKJ [INTO identifieT'J

[;AT END imperative-statement]

FORMAT 2

READ file-name RECORD [WITH NO.LOCKJ [INTO identifierJ

CsKEY IS data-name]

[;INVALID KEY imperative-statement]

Format 1 must be used for all files in sectuential access mode.

The NEXT phrase must be specified for ,iles in dynamic access
mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in·
dynamic access mode when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name ..

The associated files must be open in the INPUT or I-0 mode at the
time this statement is executed.

The KEY phrase may be specified only when the organization of
file-name is index. When the KEY clause is present. data-name must
be th• name of one of the record kevs associated with file-name.
Data-name may be qualified.

PAGE 205

The record to be made available bv a Format 1 READ statement is·
determined as follows: l

The record, pointed to bv the current record pointer, is made
available provided that the current record pointer 111as
positioned by the START ~r OPEN statement and the ~ecord is
still accessible through the path indicated by the current
record pointer. If the record is no longer accessible, which
mav have been caused by the deletion of the record, the
current record pointer is updated to point to the next
existing record in the file and that record is then made
available:

If the current record pointer was positioned by the execution
of- a previous READ statement, the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The· execution of the READ statement causes the value of the FILE
STATUS data _item, if any, associated 111ith file-name to be updated.

Wh~n th: lo;i:~! ~;cQ~~~ cf a fil~ a?~ ~~s~~rL~d with more than
one r•cord description, these records automatically share the same
storage area; this is equivalent to an implicit Tedefinition of
the area. The contents of any data items 111hich lie beyond the
range of the current data record are undefined at the completion
of the execution of the READ statement.

If, at the time of execution of a Format 1 READ statement, the
position of current record pointer for that file is undefined, the
execution of that READ.statement is unsuccessful.

The INTO Phrase

If the INTO phrase is specified, the record being r~ad is moved
from the record area to the area specified by identifieT according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Anv subscripting or indexing associated 111ith
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is availabl~
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used 111hen the input file contains
logical records of various sizes as indicated bv their record
descriptions. The storage area associated with identifier and the
r•cord area associated with file-name must not be the same storage
area.

PAGE 206

Following the unsuccessful execution of anv READ statement, the
content• of the associated record area and the position of the
current record pointer are undefined.

For T'elative files if the RELATIVE KEY phrase is specified, the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative record
number of the record made available.

For· relative files the execution of a Fo1"mat 2 READ statement sets
the current record pointer to, and makes available, the record
whose relative record number is contained in the data item named
in the RELATIVE KEY phrase for the file. If the file does not
contain such a record, the INVALID KEY condition exists and
execution .of the READ statement is unsuccessful.

Fo1" an indexed ·file being sequentiallv accessed, records having
the same duplicate value in an alternate record key which is the
kev of reference are made available in the same order in which
thev are released by execution of WRITE statements, or by
execution of. REWRITE statements which create such duplicate
values.

For· an indexed file if the KEY phrase is specified in a Format 2
READ statement, data-name is established as the key of reference
for this retrieval. If the dynamic access mode is specified, this
key of reference is also used for retrievals by any subse~uent
executions of Format l READ statements for the file until a
di4ferent key of reference is established for the file.

If the. KEY phrase is not specified in a Format 2 READ statement,
the prime record key is established as the key of reference for
this retrieval.

If the dynamic access mode is •pecified, this key of reference is
also used for retrievals by any subse,uent executions of Format 1
READ statements for the file until a different key of reference is
est•blished for the file.

For indexed files the execution of a Format 2 READ statement
causes the value of the key of reference to be compared with the
value contained in the corresponding data item of the stored
records in the file, until the first record having an e,ual value
is found. The current record pointer is positioned to this record
which is then made available. If no record can be so identified,
the INVALID KEY condition exists and execution of the READ
statement is unsuccessful.

PAGE 207

The AT·END Phrase

If, at the time of the execution of a.FoT'mat 1 READ statement, no
next logical record exists in the file, the AT END condition
occuT's, and the execution of! the READ statement is considered
unsuccessful.

When the AT END condition is recognizedi the follotidng actions are
taken in the specified order:

A value is placed· into the FILE STATUS data item, if specified
for this f'.ile, to indicate an AT END condition.

tf the AT- END phrase is specified in the statement caus.ing the
condition, control is transferred to the. AT END

· imperative-statement. Any USE p?ocedure specified for this
file is not executed.

If the ·AT END phrase is not specified, then a USE procedure
must·be specified, either explicitly or implicitlv, for this .at,,=."A +h~f- f"l,~<f'\Jlt'bff.lJ,,....'"' .. J!"" _,,.~--II'· ... -~

.... _ ,. ,....,..,,_ .,;··-- ___ 'lo, ..,.,,,,,.,.....,....,....,,,,.v.

When the - AT END
input-output statement
unsuccessful.

condition occurs,
which caused

execution of
the condition

the
is

When the AT END condition has been recognized, a Format 1 READ
statement for. that file must not be executed without first
executing one of the following:

A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

A successful START statement for that file.

A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from the file.

PAGE 208

The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of
each line on a representation of a printed page. If the ADVANCING
phrase is not used, automatic advancing ~ill be provided by the
compiler to act as if the user had specified AFTER ADVANCING 1
LINE. If the ADVANCING phrase is used, advancing is provided as
follows:.

If identifier-2 is specified, the representation
printed page is advanced the number of lines equal
current value associated with identifier-2.

of the
to the

If integer is specified, the representation of the printed
page is advanced the number of lines e~ual to the value of
integer. ·

If the BEFORE phrase is used, the line is presented before the
representat~on of the printed page is advanced.

If tha AFTER phr~~= !: ~==~r tta !!~= !: ~r;:cnt=d ~,tar
representation of the printed page is advanced.

If PAGE is specified, the record is presented on the logical
page before or after (depending on the phrase used) the device
is repositioned to the next logical page.

The ADVANCING phrase is valid only if the device-type assigned to
the file is PRINT.

PAGE 225

THE WRITE STATEMENT (Relative and Indexed I-0)

The WRITE statement releases a logical T'ecord flor an output or
input-output file.

FORMAT'

WRITE record-name CFROM identifier]

[;INVALID KEY imperative-statement]

Record-name and identifier must not reference the same storage
area.

The record-name is the name of a logical record in the File

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

The associated file must be open in the OUTPUT or I-0 mode at the
tim• of the execution of this statement.

The logical record released by the execution o9 the WRITE
statement is no longer available in the record area.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
,ile is created and must not subse~uently be changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number oF character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system.

PAGE 226

When a relative file is opened in the output mode, records may be
placed into the file bv one of the following:

Jf the access mode is seq,uential, the WRITE statement will
cause a record to be released to the System. The first record
will have a relative record number of one (1) and subsequent
records released will have relative record numbers of 2, 3, 4,

. If the RELATIVE KEY data item has been specified in the
file control entry for the associated file, the relative
record number of the record Just released will be placed into
the RELATIVE KEY data item by the System during execution of
the WRITE statement.

If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item must be initialized in the program with the relative
record number to be associated with the record in the record
area. That record is then released to the System by execution
of the WRITE statement.

When a relative file is opened in the I-0 mode and the access mode
is random or dynamic, records are to be inserted in the associated
file_ Th• v.alue nf the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record in the record area. Execution of a WRITE
statement then causes the contents of the record area to be
released to the System.

For an indexed file, the data item specified as the prime record
keg must be set by the program to the desired value prior to the
execution of the WRITE statement. Records may be placed into the
file by one of the following:

If the access mode is sequential, records must be released to
the System in ascending order of prime record key values.

19 the access mode is random or dynamic1 records may be
released to the System in any program-specified order.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement:

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement,
by the same WRITE statement without the FROM phrase.

PAGE 227

foll owed•

The content~ of the record area p~ior to the execution oP the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

The INVALID KEV Phrase

The INVALID KEV condition exists undeT' the following
circumstances:

When the access mode is se~uential for an indexed file opened
in the output mode, and the value of the prime record key is
riot greater than the value of the prime record keg of the
previous record, or

When an indexed file is opened in the output or I-0 mode, and
the value of the prime record key is e~ual to the value of a
prime record key of a record already existing in the file, or

When a relative file has random or dynamic access mode and the
RELATIVE KEY data item sp•ci~i~~ ~ ~~~~~~ ~~i~~ ;1~~;1~ e~i=~:
in the -file, OT"

When an attempt is made to write beyond the externally defined
boundaries of the file.

When the INVALID KEY condition is recognized the execution of the
WRITE •tatement i£ unsuccessful, the contents of the record area
are unaffected and the FILE STATUS data item, if any, associated
with file-name of the .associated file is set to a value indicating
the cause of the condition.

PAGE 228

APPENDIX A

ERROR MESSAGES

.PAGE 229

ERROR. MESSAOES <Compile Time>

. . . - -.
Th• text of the souTce pTogram is checked foT syntax and semantic
errors as it is scanned. Errors mav cause interruption in
scanning. In this case, text is ignored until a t'ecoveTIJ point is
found and a resume message is printed. Recovery points are chosen

. to minimize the amount of unanalgzed text without producing
iTTelevant eTTor messages. In anv case the constructs at fault are
undermarked and eTTOT messages listed wh•n the source line is
printed. The error message in~ludes eitheT E'• or W's indicating
error or waTning. For example: · ·

004030 02 STOCK PIC 9(16)PPP COMPUTATIONAL.
$

***** !)PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*EitE*E*E*E*E*E

·indicates a semantic number size error but

005040 02. -.-... l"'HR I i=iC X,4BX(Si SYiiC.
$ $

***** t)SYNTAX *E*E*E*E*E*E*E*E*EE*E*E*E*E*E*E*E*E*E*E
***** 2)SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

indicates a syntax error at the first undermaTk and a recoverv ta
tbe second undermark.

The number preceding the error message is the undermark number,
counting from left to right. More than one message mav refer to
the same undermark.

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing.

Compilation always proceeds to the end of the program, regardless
of the number of errors found. ObJect code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

PAGE 230

]

COMPILER ERROR MESSAGES

ACCESS CLASH
Nonse~uential access given for se~uential file.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item.

The referenced identifier is not valid in a class
cand it ion.

COPY statement. failed because of p•rmanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with ·the
rcfe~e~:cd i~cr.tifi~r.

DATA OVERFLOW

DATA TYPE

The data area <working-storage and literals) is larger
than 65535 bytes in length.

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION

DUPLICATE

Multiple definition of an identifier.

Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD>.

PAGE 231

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as reference in I/0 verb.

FILE RECORD KEY ERROR
The referenced filt-name has a RECORD KEY which is
incorrectly ~ualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which .conflicts with the actual data reco~d descriptions
or· is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
in:or~::t!~ ~~~lifi~d. 1~ ~~~i~~~ 1n • r~~urd
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorrectly ~ualified,
WORKING-STORAGE SECTION,
alphanumeric item.

Access or organization
undermarked statement.

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A nonelementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH

IDENTIFIER

Warning only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY)
clause.

Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

PAGE 232

ILLEOAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEOAL PERFORM
A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAORAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEV REQUIRED

LABEL

LEVEL

LINKAQE

Relative key not declared for random access relative
file or record key not declared for indexed file.

Presence or absence of label record conflicts with
d•vice standards.

Level-number given is invalid either intrinsicall~ or
because of position within a group.

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specifv an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a n~ndeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

PAOE 233

NESTINQ
Illegal nesting of condition that is not
condition.

an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

Occurs clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The 'referenced obJect of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

FICTURE
Invalid picture sgntax.

?ICTURE-BwZ CLASH
Zero suppres~ion and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte.

RECORD REQUIRED

REDEFINES

Context re~uires record name.

REDEFINES given within an OCCURS or not redefining the
last allocated item.

PAGE 234

l

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not l eve 1 01.

REFERENCE INVALID
Reference given is· not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared For other than a relative
organization file or a START statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is -req_uired. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SIZE

SIZE ERROR

A VALUE IS clause appears in the FILE or LINKAGE
section.

Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.

Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN clause given in conflict with usage and picture.

Warning only. Size of data referenced not correct for
context.

Declared
reference.

size of

PAGE 235

record conflicts with present

SUBSCRIPT

SYNC

SYNTAX

UNDEFINED

Incorrect number of subscripts or indices
reference.

Synchronized clause given for a group item.

Incorrect character or reserved word given for context.

File referenced in FD entry was not defined.

a

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

· UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REGUIRt:::D
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference
to the same program name.

VALUE ERROR

VALUE

VARIABLE

Value given in VALUE IS required truncation of nonzero
digits.

VALUE IS clause given in conflict with other declared
attributes.

nt'::CORD
Warning only. The INTO phrase is not allowed with
variable size records.

PAGE 236

APPENDIX B

RESERVED·WORDS

PAGE 237

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

* denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI COBOL reserved words not reserved by the
compiler. Their appearance will generate a warning at the end
of the compilation listing.

** denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCINQ
AFTER
ALL

•BEEP
BEFORE
BLANK

CALL
+CANCEL
+CD
+CF
+CH

CHARACTER
CHARACTERS

+CLOCK-UNITS
CLOSE

+COBOL
+CODE

DATA
DATE

+DATE-COMPILED
DATE-WRITTEN
DAY

+DE
+DEBUG-CONTENTS
+DEBUG-ITEM
+DEBUG-LINE
+DEBUG-NAME

ALPHABETIC
+ALSO

ALTER
ALTERNATE
AND
ARE

•BLINK
BLOCK

+BOTTOM

+CODE-SET
COLLATING

+COLUMN
COMMA

+COMMUNICATION
COMP

*COMP-1
*COMP-3

COMPUTATIONAL
*COMPUTATIONAL-1
*COMPUTATIONAL-3

+DEBUG-SUB-1
+DEBUG-SUB-2
+DEBUG-SUB-3
+DEBUGGING

DECIMAL-POINT
DECLARATIVES
DELETE

+DELIMITED
+DELIMITER

DEPENDING

PAQE 238

AREA
+AREAS
+ASCENDING

ASSIGN
AT
AUTHOR

BY

COMPUTE
CONFIGURATION
CONTAINS

+CONTROL
+CONTROLS
*CONVERT

COPY
CORR
CORRESPONDINQ

+COUNT
CURRENCY

+DESCENDING
+DESTINATION
+DETAIL
+DISABLE

DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

]

*ECHO +END-OF-PAGE ERROR
+EGI +ENTER +ES!

ELSE ENVIRONMENT +EVERY
+EMI +EDP EXCEPTION
+ENABLE EGUAL EXIT

END *ERASE EXTEND

FD FILLER +FOOTING
FILE +FINAL FOR
FILE-CONTROL FIRST FROM

+GENERATE GO +GROUP
GIVING GREATER

+HEADING HIGH-VALUE
*HIGH HIGH-VALUES

I-0 INDEXED INSPECT
I-0-CONTROL +INDICATE INSTALLATION
IDENTIFICATION INITIAL INTO
IF +INITIATE INVALID
IN INPUT IS
INDEX INPUT-OUTPUT

JUST JUSTIFIED

KEV

LABEL +LIMIT LINES
+LAST +LIMITS LINKAGE

LEADING +LINAGE LOCK
LEFT +LINAGE-COUNTER LOW

+LENGTH LINE LOW-VALUE
LESS +LINE-COUNTER LOW-VALUES

MEMORY MODE +MULTIPLE
+MERGE MODULES MULTIPLY
+MESSAGE MOVE

NATIVE NO NUMERIC
+NEGATIVE NOT

NEXT +NUMBER

PAGE 239

OBJECT-COMPUTER OMITTED OR

l OCCURS ON ORGANIZATION
OF OPEN OUTPUT
OFF +OPTIONAL +OVERFLOW

PAGE +PLUS +PROCEDURES
+PAGE-COUNTER +POINTER PROCEED

PERFORM POSITION PROGRAM
+PF +POSITIVE · PROGRAM-ID
+PH *PRINT •PROMPT

PIC +PRINTING
PICTURE PROCEDURE

+GUEUE GUOTE QUOTES

RANDOM +REMAINDER •REVERSE
+RD +REMOVAL +REVERSED

READ RENAMES REWIND
+RECEIVE REPLACING REWRITE

RECORD +REPORT +RF
RECORDS +REPORTING +RH
REDEFINES +REPORTS RIGHT
REEL +RERUN ROUNDED

+REFERENCES +RESERVE RUN
RELATIVE +RESET

+RELEASE +RETURN

SAME SIZE +SUB-GUEUE-2
+SD +SORT +SUB-GUEUE-3
+SEARCH +SORT-MERGE SUBTRACT

SECTION +SOURCE +SUM
SECURITY SOURCE-COMPUTER +SUPPRESS

+SEGMENT SPACE **SWITCH-!
+SEGMENT-LIMIT SPACES **SWITCH-2

SELECT SPECIAL-NAMES ,
+SEND STANDARD ,

SENTENCE STANDARD-! ,
SEPARATE START **SWITCH-8
SEQUENCE STATUS +SYMBOLIC
SEQUENTIAL STOP SYNC
SET +STRING SYNCHRONIZED
SIGN +SUB-GUEUE-1

PAGE 240

*TAB
+TABLE

TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
*UNLOCK
+UNSTRING

VALUE

WHEN
WITH

ZERO

+

=

+TEXT
THAN
THROUGH
THRU
TIME
TIMES

UNTIL
UP

+UPON

VALUES

WORDS
WORKING-STORAGE

ZEROES

>
<

PAGE 241

TO
+TOP

TRAILING
+TYPE

USAGE
USE
USING

VARYING

WRITE

ZEROS

* I
**

APPENDIX C

GLOSSARY

PAQE 242

GLOSSARY

The terms in this appendix are def(ned in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to reading
the detailed language specifications. For this reason, these
definitions are, in most instances, brief and do not include
detailed syntactical rules.

Access Mode:
The manner in which records are to be operated upon within a file.

Actual Decimal Point:
The physical representation, using either of the decimal point
characters period <. > or comma C, >, of the decimal point position
in a data item.

Alphabet-Name:
A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, t~at assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character:
A character that belongs to the following set of letters: A, B, C,
D, E, F, Q, H, I, J, K, L, M, N, 0, P, G, R, S, T, U, V, W, X, Y,
Z, and the space.

Alphanumeric Character:
Any character in the computer's character set.

Alternate Record Key:
A key, other than the prime record key, whose contents identify a
record within an indexed file.

Arithmetic Expression:
An arithmetic expression
elementary item, a numeric
separated by arithmetic
separated by an arithmetic
enclosed in parentheses.

can be an identifier or a numeric
literal, such identifiers and literals
operators, two arithmetic expressions
operator, or an arithmetic expression

PAGE 243

Arithmetic Operator:
A single character that belongs to the following set:

Character

+

* I

Ascending Key:

Meaning

addition
subtraction
multiplication
division

A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparing data items.

Assumed Decimal Point:
A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition:
A condition caused during the execution of a READ statement for a
sequentially accessed file.

Block:
A physical unit of data that is normally composed of one or more
logical records. For mass storage files. a block may contain a
portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the block or that overlap the block. The term is
synonymous with physical record.

Called Program:
A program which is the obJect of a CALL statement combined at
obJect time with the calling program to produce a run unit.

Calling Program:
A program which executes a CALL to another program.

Character:
The basic indivisible unit of the language.

PAGE 244

1

J

Character Position:
A character position ie the amount af physical storage required to
s·tore a single standard data format character described as USAGE
is DISPLAY Can~ byte).

Character-String:
A sequence of contiguous characters which form a COBOL word, a
literal, a PICTURE charac ter-s tr i ng, o·r a comment-entry.

Class Condition:
The proposition,
the content of an

ror which a truth value can be determined, that
itam is wholly alphabetic or is wholly numeric.

Clause:
A clause is an ordered set or consecutive COBOL character-strings
whose purpose is to specify an attribute of an entry.

COBOL Character Set:
The complete COBOL character set consists of the 51 characters
listed below.

ChaT'acter

01 1, ... I 9
A, B, ... , Z

+

* I

$

u

(

)

>
<

COBOL Word. (See Word)

Collating Sequence:

Meaning

digit
letter·
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

The se~uence in which the characters that are acceptable in a
computer are orderad for purposes of comparing.

PAGE 245

Column:
A character position within a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the
print line and extending to the rightmost position of the print
line.

Combined Condition:
A condition that is the result of connecting two or more
conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry:
An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line:
A source program line represented by an asterisk in the indicator
area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line serves
only for documentation in a program. A 5pec1a~ form of comment
line represented by a stroke (/) in the indicator area of the line
and any characters from the computer's character set in area A and
area B of that line causes page eJection prior to printing the
comment.

•
Compile-Time:
The time at which a COBOL source program is translated, by a COBOL
compiler, to a COBOL obJect program.

Compiler Directing Statement:
A statement, beginning with a compiler directing verb, that causes
the compiler to take a specific action during compilation.

Complex Condition:
A condition in which one or more logical operators act upon one or
more conditions.

Computer-Name:
A system-name that identifies the computer upon which the program
is to be compiled or run (commentary only).

PAGE 246

Condition:
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-1,
condition-2, ... > appears in these language specifications in or
in reference to 'condition' Ccondition-1, condition-2, ... > of a
general format, it is a conditional expression consisting of a
simple condition, optionally parenthesized, consisting of the
syntactically correct combination of simple conditions, logical
operators, and parentheses, for which a truth value can be
determined.

Condition-Name:
A user-defined word assigned to a specific value, set of values,
or range of values, within the complete set of values that a
conditional variable mav possessi or the useP-de~ined word
assigned to a status of a system software switch.

Condition-Name Condition:
The proposition, for which a truth value can be determined, that
the valµ~ of ~ ron~ttion~l v~ri•bl~ i~ ~ m~mber of the set of
values attributed to a condition-name associated with the
conditional variable.

Conditional Expression:
A simple condition or a complex condition specified in an IF or
PERFORM statement.

Conditional Statement:
A conditional statement specifies that the truth value of a
condition is to be determined and that the subse~uent action of
the obJect program is dependent on this truth value.

Conditional Variable:
A data item one or more values of which has a condition name
assigned to it.

Configuration Section:
A section of the Environment Division that describes overall
specifications of source and obJect computers.

PAGE 247

Connective:
A reserved word that is used to:

Associate a data-names paragraph-name or condition-name with
its q_ualifier.

Link two or more operands written in a series.

Form conditions (logical connectives).

Contiguous Items:
Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each
other.

Counter:
A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
OT' to an aT'bitrarri po£itiv~ o-r nP!?.:at:iv,a v..alm:,

Cu-rrency Sign:
The character '$' of the COBOL character set.

Currency Symbol:
The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
a COBOL source program, the currency symbol is identical to the
currency sign.

Current Record:
The record which is available in the record area associated with
the file.

Current Record Pointer:
A conceptual entity that is used in the selection of the next
record.

Data Clause:
A clause that appears in a data description entry
Division and provides information describing
attribute of a data item.

PAGE 248

in the Data
a particular

l

Data Description Entrlj:
An entry 'in the Data Descl"iption that is composed
level-number followed by a data-name, if req_uired,
followed by a set of data clauses, as re~uired.

Data· Item:

of a
and then

A character or a set of contiguous characters <excluding in either
case literals) defined as a unit of data by the COBOL program.

Data-Name:
A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats, 'data-name' represents a word 1a1hich can neither be·
subscripted, indexed, nor q_ualified unless specifically permitted
by the rules for that format.

Debugging Line:
A debugging line is any line with 'D' in the indicator area of the
line.

Declaratives:
A set of one or more special purpose sections, written at the
beginning of the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sentence, followed by a set of zero, one or. more associated
paragraphs.

Declarative-Sentence:
A compiler-directing sentence consisting of a single USE statement
terminated by the separator period.

Delimiter:
A character or a seq_uence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Digit Position:
A digit position is the amount of physical storage required to
store a single digit. This amount may varv depending on the usage
of the data item describing the digit position.

PAGE 249

Division:
A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a
specific set of rules. There are fo~r <4> divisions in a COBOL
program: Identification, Environment, Data, and Procedure.

Division Header:
A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION CUSINQ data-name-1 Cdata-name-2J ... J.

Dynamic Access:
An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non se~uential manner
(see Random Access) and obtained from a file in a se~uential
manner <see Se~uential AccPc;c.), tf•JT'jng the s~i:,pe of the same OPEN
statement.

Editing Character:
A single character or fixed two-character combination belonging to
the following set:

Character

B
0
+

CR
DB
z
* $

I

I

Elementary Item:

Meaning

space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point>
stroke <virgule, slash)

A data item that is described as not being further logically
subdivided.

End of Procedure Division:
The physical position in a COBOL source program after which no
further procedures appear.

PAGE 250

Entry:
Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

Execution Time. (See ObJect Time)

Extend Mode:
The state of a file after execution of an OPEN statement, with the
EXTEND phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Fig~~~tiv~ Conit~~t:
A compiler generated value referenced through the use of certain
reserved words.

File:
A collection of records.

File Clause:
A clause that appears as part of the file description <FD> entries
in the Data Division.

FILE-CONTROL:
The name of an Environment Division paragraph in which the data
files for a given source program are declared.

File Description Entry:
An entry in the File Section of the Data Division that is composed
of the level indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

File-Name:
A user-defined word that names a file described in a file
description entry within the File Section of the Data Division.

File Organization:
Tha permanent logical file structure established at the time that
a file is created.

PAGE 251

File Section:
The section of the Data Division that contains file description]
~ntries together with their associated record descriptions.

Fol'mat:
A specific arrangement of a set of data.

Group Item:
A named contiguous set of elementary or gl'oup items.

I-0-CONTROL:
The name of an Envil'onment Division pal'agraph in which sharing of
same al'eas by several data files is specified.

I-0-Mode:
The state of a file aftel' execution of an OPEN statement, with the
1-0 phrase specified, for that file and befol'e the execution of a
CLOSE statement for that file.

Identifier:
A data-name, followed as required, by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to
make unique reference to a data item.

Imperative Statement:
A statement that begins with an imperative verb and
unconditional action to be taken. An imperative
consist of a sequence of imperative statements.

Index:

specifies an
statement may

A data 1,em, the contents of which represent the identification of
a particular element in a table.

Index Data Item:
A data item in which the value associated with an index-name can
be stored.

Index-Name:
A user-defined word that names an index associated with a specific
table.

PAGE 252

Indexed Data-Name:
An identifier that is composed of a data-name, followed by one or
more index-names enclosed in parentheses.

Indexed File:
A file with indexed organization.

Indexed Organization:
The permanent logical file
identified by the value
record.

Input File:

structure in
of one fixed

A file that is opened in the input mode.

Input Mode:

which each record is
length key within that

The state of a file after execution of an OPEN statement, with·the
INPUT phl'ase spfllr.if~~~~ fo!' thet file .'.::-:~ ~zf.;,e the ciccut.iu.-1 ur
a CLOSE statement for that file.

Input-Output File:
A file that is opened in the I-O mode.

Input-Output Section:
The section of the Environment Division that names the files and
the external media re~uired by an obJect program and which
provides information re~uired for transmission and handling of
data during execution of the obJect program.

IntegeT':
A numeric liteT'al or a numeric data item that does not include any
character positions to the right of the assumed decimal point.
Where the term 'integer' appears in gene1"al formats, integer must
not be a numeric data item, and must not be signed, nor ze1"0,
unless explicitly allowed by the rules of that format.

Invalid Key Condition:
A condition, at obJect time, caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

Ketj:
A data item which· identifies the location of a record.

PAGE 253

Key Word:
A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identify a specific type of file or
a position in hierarchy.

Level-Number:
A user-defined word which indicates the position of a data item in
the hierarchical structure of a logical record or which indicates
special properties of a data description entrij. A level-number is
expressed as a one- or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers in the
range 1 through 9 may be written either as a single digit or as a
zero followed by a significant digit. Level-numbers 77 and 88
identify special properties of a data description entry.

Library-Name:
A user-defined word that names a COBOL library that is to be used
by the compiler for a given ~ource program compilation.

Linkage Section:
The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal:
A character-string whose value is implied by the ordered set of
characters comprising the string.

logical Operator:
One of the reserved words AND, OR, or NOT. In the formation of a
condition, both or neither of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Mass Storage:
A storage medium on which data may be organized and maintained in
both a se~uential and nonsequential manner.

PAGE 254

J

Ha•s Storage File:
A collection of records that is assigned to a mass storage medium.

Hnemoni c-Name:
A user-defined word that is associated in the Environment Division
with a specified system-name.

Native Character Set:
The character set associated with the COBOL Compiler <ASCII>.

Native Collating Se~uence:
The collating se~uence associated with the native character set.

Negated Combined Condition:
The 'NOT' logical operator immediately followed by a parenthesized
combined condition.

Negated Simple Condition: -
The 'NOT' logical operator
condition.

immediately followed by a simple

Next Executable Sentence:
The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement:
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record:
The record which logically follows the current record of a file.

Noncontiguous Items:
Elementary data items, in the
Sections, which bear no hierarchic
items.

Nonnumeric Item:

Working-Storage
relationship to

and Linkage
other data

A data item whose description permits its contents to be composed
of any combination of characters taken from the computer's
character set. Certain categories of nonnumeric items may be
formed from more restricted character sets.

PAGE 255

Nonnumeric Literal:
A character-string bounded by quotation marks. The string of l
characters may include any character in the computer's character
set. To represent a single ~uotation mark ch•racter within a
nonnumeric literal, two contiguous quotation marks must be used.

Numeric Character:
A character that belongs to the following set of digits: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

Numeric Item:
A data item whose•description restricts its contents to a value
represented by characters chosen from the digits '0' through '9';
if signed, the item may also contain a '+', '-', or other
representation of an operational sign.

Numeric Literal:
A literal composed of one or more numeric characters that also maij
contain either a decimal point, or an algebrai~ sign, or both. The
decimal point must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

OBJECT-COMPUTER:
The name of an Environment Division paragraph in which the
computer environment, within which the obJect program is executed,
is described.

ObJect of Entry:
A set of operands and reserved words, within a Data Division
entry, that immediately follows the subJect of the entry.

ObJect Program:
A set or group of executable instructions and other material
designed to interact with data to provide problem solutions. In
this context, an obJect program is generally the result of the
operation of a COBOL compiler on a source program. Where there is
no danger of ambiguity, the word 'program' alone may be used in
place of the phrase 'obJect program'.

ObJect Time:
The time at which an obJect program is executed.

PAQE 256

Open Mode:
The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-O, or EXTEND.

Occurrence Number:
The relative data item number in a table.

Operand:
Whereas the general definition of operand is 'that component which
is operated upon', for the purposes of this publication, any
lowercase word (or words> that appears in a statement or entrv
format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

Operational Sign:
An algebraic sign, associated with a numeric data item or a
numeric liter&!, ta i~dicate whether
negative.

Optional Word:
A reserved word that is included in a specific format onlv to
improve the readability of the language and whose presence is
optional to the user when the format in which the word appears is
used in a source program.

Output File:
A file that is opened in either the output mode or extend mode.

Output Mode:
The state of a file after execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file.

Paragraph:
In the Procedure Division, a paragraph-name followed by a period
and a space and by zero, one, or more sentences. In the
Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries.

PAGE 257

Paragraph Header:
A reserved word, followed by a period and a space that indicates)
the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-0-CONTROL.

Paragraph-Name:
A user-defined word that identifies and begins a paragraph in the
Procedure Division.

Phrase:
A phrase is an ordered set of
character-strings that .form a
statement or of a COBOL clause.

Physical Record. (See Block)

Prime Record Key:

one or more
portion of

consecutive COBOL
a COBOL procedural

A key whose contents uni~uely identify a record within an indexed
file.

Procedure:
A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the
Procedure Division.

Procedure-Name:
A user-defined word which is used to name a paragraph or section
in the Procedure Division. It consists of a paragraph-name (which
may be q_ualified), or a section-name.

PAGE 258

Program-Name:
A user-defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set:

Characte-r

I

;

•.
H

(

)

-
Qualified Data-Name:

Meaning

comma
semicolon
period
quotation maT'k
left paT'enthesis
~ight parenthesis
space
equal sign

An identifier that is composed of a data-name followed by one or
more ••ts of eiiher of ihe connectives OF anci IN followeci by a
data-name qualifier.

Qualifier:
A data-name which is used in a reference together with another
data name at a lower level in the same hierarchy. A section-name
which is used in a reference together with a paragraph-name
specified in that section.

Random Access:
An access mode in which the program-specified value of a key data
item identifies the logical record that is obtained from, deleted
from, or placed into a relative or indexed file.

RecoT'd AT'ea:
A storage area allocated for the purpose of processing the record
descT'ibed in a record description entry in the File Section.

Record Description. (See Record Description Entry)

Record Description Entry:
The total set of data description entries associated with a
particular record.

PAGE 259

Record Ke9:
The prime record key whose contents uni~uely identily a record]
within an indexed file.

Record-Name:
A user-defined word that names a record described in a record
description entry in the Data Division.

Reference Format:
A format that provides a standard method for describing COBOL
source programs.

Relation. <See Relational Operator>

Relation Character:
A character that belongs to the following set:

Character

>
<
=

Relation Condition:

Meaning

greater than
less than
•~ual to

The proposition, for which a truth value can be determined, that
the value of a data item has a specific relationship to the value
of another data item. <See Relational Operator)

PAGE 260

Relational Operator:
A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

Relational Operator Meaning

JS CNOTl GREATER THAN G-reater than or not
JS CNOTJ > greater than

IS CNOTJ LESS THAN Less than or not
IS CNOTJ < less than

IS CNOTJ EGUAL TO Eq,ual to or not
IS CNOTJ = equal to

Relative File:
A ~il: ~it~ r.l.t!v; w,;.r.i1ation.

Relative Kei:,:
A kei:, whose contents identifies a logical record in a relative
file.

Relative Organization:
The permanent logical file structure in which each record is
uniq,uelv identified by an integer value greater than zero, which
specif~es the record's logical ordinal position in the file.

Reserved Word:
A COBOL word specified in the list of words which
COBOL source programs, but which must not appear in
as user-defined words or system-names.

Run Unit:

may be used in
the progl'ams

A set of one or more obJect programs which function at obJect
time, as a unit to provide problem solutions.

Section:
A set of zero, one, or more paragraphs or entries, cal led a
section bodi:,, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

PAGE 261

Section Heade-r:
A combination ol words followed bv a period and a.space that]
indicates the beginning of a section in the Environment, Data and
P-rocedure Division.

In the Environment and Data Divisions, a section
composed of reserved words followed by_a period and a
permissible section headers are:

header is
space. The

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

It~ th~ Fro~~dure Division, a section ~eader is composeti of a
section-name, followed by the reserved word SECTION, followed by a
segment-number <optional), followed by a period and a space.

Section-Name:
A user-defined word which names a section in the Procedure
Division.

Segment-Number:
A user-defined word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may contain
onlv the characters '0', '1 ', ... , '9'. A segment-number may be
expressed either as a one- or two-digit number.

Sentence:
A se~uence of one or more statements, the last of which is
terminated bv a period followed by a space.

Separator:
A punctuation character used to delimit character-strings.

Se~uential Access:
An access mode in which logical records
placed into a file in a consecutive
logical record se~uence determined by the
file.

PAGE 262

are obtained from or
predecessor-to-successor
order of records in the

Sectuential File:
A file with se~uential organization.

Sectuential Organization:
The permanent logical file structure
identified by a predecessor-successor
when the record is placed into the file.

Simple Condition:
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
(simple-condition>

SOURCE-COMPUTER:

in which a
relationship

record is
established

T~• name "~ ~n FnvirnnmPn~ Divi~inn ,~r~er~ph in whirh thP
computer environment, within which the source program is compiled,
is described.

Source Program:
A syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of the Procedure
Division. In contexts where there is no danger of ambiguity, the
word 'program' alone may be used in place of the phrase 'source
program. '

PAGE 263

Special Character:
A character that belongs to the following set:

Character

+

* I

$

J

ti

(

)

::>
<

Special-Ch~racter Word:

Meaning

plus sign
minus sign
asterisk
stroke <virgule, slash)
equal sign
currency sign
comma (decimal point>
semicolon
period (decimal point)
(luotat i cm mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

A reserved word which is an arithmetic operator or a relation
character.

SPECIAL-NAMES:
The name of an Environment Division paragraph in which
switch-names are related to user-defined words.

Standard Data Format:
The concept used in describing the characteristics of data .in a
COBOL Data Division under the characteristics or prop~rties of the
data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than
a form orient~d to the manner in which the data is stored
internally in the computer, or on a particular external medium.

Statement:
A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb.

SubJvct of Entry:
An operand or reserved word that appears immediately fallowing the
level indicator or the level-number in a Data Division entry.

Subprogram. (See Ca 11 ed Program)

PAGE 264

l

Subscript:
An integer whose value identifies a particular element in a table.

Subscripted Data-Name:
An identifier that is composed of a data-name followed by one or
more subscripts enclosed in parentheses.

Switch-Status Condition:
The proposition, for which a truth value can be determined that a
switch, capable of being set to an 'on' or 'off' status, has been
set to a specific status.

System-Name:
A COBOL word which is used to communicate with the operating
environment.

Table:
A set of logicall~ consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items comprising a
table.

Text-Name:
A file access name that identifies library text.

Truth Value:
The representation of the result of the evaluation of a condition
in terms of one of two values:

true
false

Unary Operator:
A plus C+) or a minus
left parenthesis in
effect of multiplying

User-Defined Word:

<-> sign, which precedes a variable or a
an arithmetic expression and which has the

the expression by +1 or -1 respectively.

A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

PAGE 265

Variable:
A data item whose value mav be changed bV execution of the obJect }
~rogram. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb:
A word that expresses an action to be taken by a COBOL compiler or
obJect program.

Word:
A character-string of not more than 30 characters which forms a
user-defined word, a system-name, or a reserved word.

Working-Storage Section:
The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working
storage records or of both.

77-Level-Description-Entrv:
A data desccription entrv that describes a noncontiguous data item
with the level-number 77.

PAGE 266

APPENDIX D

COMPOSITE LANOUAGE SKELETON

PAGE 267

COMPOSITE LANGUAGE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to display
complete and syntactically correct formats.

For the general formats of the four divisions the leftmost margin
is •~uivalent to margin A in a COBOL source program. The first
indentation after the leftmost margin is e~uivalent to margin Bin
a COBOL source program.

For the general formats of the verbs and conditions the leftmost
margin indicates the beginning of the format for a new COBOL verb.
The first indentation after the leftmost margin indicates
continuation of the format of the COBOL verb.

The following is a summary of the formats shown on the following
pages:

Identification Division general format
Environment Division general format
The three formats of the file control entry
Data Division general format
The three formats for a data description entry
The format for a field definition entry
Procedure Division general format
General format of verbs listed in alphabetical order
General format for conditions
Formats for ~ualification, subscripting, indexing, and

an identifier
General format for a COPY statement

PAGE 268

)

RM/COBOL LANGUAGE SYNTAX

The RM/COBOL langu~ge is based upon the ANSI X3. 23-1974 COBOL
standard. Minor departures from that document are reflected in the
syntax description which follows but are not separately noted.
Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases separate formats are combined and
general terms are employed for user names.

System-names and implementation restrictions are:

computer-name:
program-name:
s111itch-names:
device-types:

User-defined word
a-character name
SWITCH-1, ... , SWITCH-8
PRINT
INPUT
OUTPUT
INPUT-nt ITPI.JT

RANDOM
external-file-name: One- to thirty-character name

PAGE 269

IDENTIFICATION DIVISION GENERAL FORMAT

)
IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. Ccomment-entrvl ... l

[INSTALLATION. Ccomment-entryl l

[DATE-WRITTEN. Ccomment-entrvl l

[SECURITY. Ccomment-entryl l

PAGE 270

ENVIRONMENT DIVISION GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name

t, MEMORY SIZE integer {WORDS }J

{CHARACTERS}

<MODULES }

C, PROGRAM COLLATING SEQUENCE IS alphabet-name].

[SPECIAL-NAMES. C, switch-name

<ON STATUS IS condition-name-1 C, OFF STATUS IS condition-name-2J)J

(OFF STATUS IS condition-name-2 C, ON STATUS IS condition-name-1J}J

C, alphabet-name IS {STANDARD-1}]

{NATIVE }

C, CURRENCY SIGN IS literal-1J

[, DECIMAL-POINT IS COMMAJ. J

PAGE 271

t INPUT-OUTPUT SECTION.

FILE-CONTROL.

(file-control-entry>

tl-0-CONTROL

C; SAME AREA FOR f i 1 e-name-1 C. .Pi 1 e-name-2J ... J. . . . J l

PAQE.272

FILE CONTROL ENTRY CENERAL FORMAT

FORMAT 1

SELECT file-name

ASSIGN TO device-t~pe {"external-file-name"}
------ {data-name-1 >

C; ORGANIZATION IS SEGUENTIALJ

C; ACCESS MODE IS SEGUENTIALJ

[; FILE STATUS IS data-name-2J.

FORMAT 2

SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
<data-name-1 >

; ORGANIZATION IS RELATIVE

[; ACCESS MODE IS { SEGUENTIAL C, RELATIVE KEY IS data-name-2l} l

<<RANDOM}

{{DYNAMIC}

[; FILE STATUS IS data-name-3J.

PAGE 273

, RELATIVE KEY IS data-name-2}

>

FORMAT 3

SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
------ ------ {data-name-1 >

; ORGANIZATION IS INDEXED

(; ACCESS MODE IS <SEGtJENTIAL}J

<RANDOM }

{DYNAMIC }

; RECORD KEY IS data-name-2

C1 ALTERNATE RECORD KEY IS data-name-3 CWITH DUPLICATESJJ ...

[1 FILE STATUS IS data-name-4J.

PAGE 274

DATA DIVISION GENERAL FORMAT

DATA DIVISION.

[FILE SECTION.

CFD file-name

C; BLOCK CONTAINS Cinteger-1 TOJ integer-2 {RECORDS }J ___ .,. __ _
<CHARACTERS>

[1 RECORD CONTAINS Cinteger-3 TOJ integer-4 CHARACTERS]

, LABEL <RECORD IS > <STANDARD>

<RECORDS ARE> <OMITTED}

C, VALUE OF LABEL IS nonnumeric-literal-1]

t, DATA {RECORD IS } data-name-1 C, data-nam&-2J ... J

<RECORDS ARE>

[1'ecord-description-entr1i1J . . . l ...

[WORKING-STORAGE SECTION.

[77-level-description-entrt,Jl . . .]
[record-description-entry l

[LINKAGE SECTION.

[77-level-description-entry] . . .]l
[record-description-entry l

PAGE 275

DATA DESCRIPTION ENTnV GENERAL FORMAT

FORMAT 1

level-number <data-name-1>
<FILLER >

[1 REDEFINES data-name-21

Cs <PICTURE> IS character-string]

<PIC >

C, [USAGE ISl <COMPUTATIONAL)l

<COMP }

{COMPUTATIONAL-1>

(COMP-1 >
<COMPUTATIONAL-3>

<COMP-3 >
<DISPLAY)

<INDEX)

C, [SIGN ISl TRAILING [SEPARATE CHARACTER] J

[1 OCCURS <integer-1 TIMES)
------ {integer-1 TO integer-2 TIMES DEPENDING ON data-name-3>

[INDEXED BY index-name-1 C, index-name-2] ... l l

PAGE 276

Ci {SYNCHRONIZED} CLEFT J J

{SYNC } [RIGHTJ

C; {JUSTIFIED} RIQHTJ

{JUST >

[; BLANK WHEN ZEROJ

[; VALUE IS literalJ

FORMAT 2

66 data-name-1; RENAMcS data-name-2 [{THROUGH} data-name-3].

{THRU >

FORMAT 3

88 condition-name; {VALUE IS >

{VALUES ARE>

literal-! [{THROUGH> literal-2J

{THRU >

C, literal-3 [{THROUGH} literal-4] J

{THRU >

PAGE 277

•

PROCEDURE DIVISON GeNERAL FORMAT

FORMAT 1

PROCEDURE DIVISION CUSINQ data-name-1 C,data-name-2l ... l.

CDECLARAT IVES.

<section-name SECTION Csegment-numberl. declarative-sentence

[paragraph-name. [sentence] . . . l . . . >

END DECLARATIVES. l

<section-name SECTION [segment-number].

[paragraph-name. [sentence) ... l ... >

END PROGRAM.

FORMAT 2

PROCEDURE DIVISION CUSINQ data-name-1 t,data-name-21 ... l.

{paTagraph-name. Csentencel . . . } ...

END PROORAM.

PAGE 278

J

OENERAL FORMAT FOR VERBS

ACCEPT {identifier-! t, UNIT {identifier-2}J
------ {literal-1 }

C, LINE {identi.f!ier-3}J [, POSITION {identifier-4}]
{literal-2 } ----·---- {literal-3 }

[, SIZE {identifiet'-5}J [' PROMPT tliteT'al-5JJ
{liteT'al-4 } ------

C, ECHOJ [, CONVERTJ [, TAB] [, ERASEJ C, NO BEEPJ
------- ----- -- ----

[, {OFF}] C, ON EXCEPTION identifier-6 imperative statement]} ...

ACCEPT identifier FROM (DATE}

{DAY}

{TIME}

ADD {identifier-1} C, identifier-2l ... TO identifier-m tROUNDEDJ
{literal-1 } C, literal-2 l -------

[; ON SIZE ERROR imperative-statement]

ADD {identifier-1h {identifier-2} C, identifier-31
{literal-1 } <literal-2 } t, literal-3 l

GIVING identifier-m CROUNDEDJ

Ci ON SIZE ERROR imperative-statement]

ADD {CORRESPONDING} identifier-1 TO identifier-2

<CORR }

CROUNDEDJ [; ON SIZE ERROR imperative-statementJ

PAGE 279

ALTER procedure-nam~-1 TO [PROCEED TOl procedure-name-2

C, procedure-name-3 TO [PROCEED TOl procedure-name-4J

CALL <identifier-1> CUSINQ data-name-1 C, data-name-2] l
<literal-I > -----

CLOSE file-name-1 [{REEL> [WITH NO REWINDl l

<UNIT>

WITH {NO REWIND>

<LOCK >

C, file-name-2 C<REEL> CWITH NO REWIND] l l

<UNIT>

WITH <NO REWIND}

<LOCK >

COMPUTE identifier-1 CROUNDEDJ = arithmetic-expression

C; ON SIZE ERROR imperative-statement]

DELETE file-name RECORD[; INVALID KEY imperative-statementl.

DISPLAY <<identifier-1} C, UNIT (identifier-2> l
------- (literal-1 > (literal-2 >

C, LINE {identifier-3}lC, POSITION (identifier-4}]
(literal-3 > -------- {literal-4 >

C, SIZE {identifier-5}][, BEEPJC, ERASE]
{literal-5 > -----

C, (HIOH>lC, BLINKlC, REVERSE]}

<LOW>

PAGE 280

DIVIDE (identifier-1} INTO identifier-2 CROUNDEDJ
----- (liteTal-1 > ---- -------

[; ON SIZE ERROR imperative-statement]

DIVIDE (identifier-1} INTO (identifier-2} OIVINQ identifier-3
------ {literal-1 > (literal-2 > ------

CROUNDEDJ C; ON SIZE ERROR imperative-statement]

DIVIDE {identifier-1} BY (identifier-2} OIVING identifier-3 CROUNDEDl
------ {literal-1 } -- <literal-2 > ------ -------

[; ON SIZE ERROR imperative-statement]

EXIT CPROQRAMJ.

QO TO procedure-name-1

GO TO procedure-name-1 C, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

IF condition; <statement-1 > <; ELSE statement-2 >

<NEXT SENTENCE>(; ELSE NEXT SENTENCE>

PAGE 281

INSPECT identifier-1

[TALLYING identifier-2 FOR {{ALL > {identifier-3}}
{litP.ral-1 }}

<<LEADING}

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-4>JJ
------ {literal-2 }

{AFTER>

[REPLACING <<ALL } {identifier-S}} BY {identifier-6>

[{BEFORE>

{AFTER}

{literal-3 } {literal-4 >
{{LEADING} >

{{FIRST > >

> { CHARACTERS

INITIAL {identifier-7}Jl
{literal-5 >

NOTE: The TALLYING option, the REPLACING option, or both
options must be selected.

PAGE 282

MOVE (identifier-1} TO identifier-2 C, identifier-3J ...
{literal } --

MOVE <CORRESPONDING} identifier-1 TO identifier-2
,..,.....,.,_.... . -------------

{CORR }

HVLiIPLY {identifie~-1} BY identifier-2 CROUNDEDJ
-------- {literal-1 > -------

[; ON SIZE ERROR imperative-statement]

MULTIPLY {identifier-1} BY {identifier-2} GIVING identifier-3
-------- {literal-1 } -- {literal-2 } ------

CROUNDEDJ C; ON SIZE ERROR imperative-statement]

OPEN <<INPUT file-name-1 CWITH NO REWIND]}

C, file-name-2 CWITH NO REWINDJ ...

<OUTPUT file-name-3 CWITH NO REWIND]}

[, file-name-4 CWITH NO REWINDJJ ...

<I-0 file-name-S}C, file-name-6J ...

{EXTEND file-name-7}[, file-name-Bl ... } ...

PAGE 283

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

{THRU }

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

{THRU }

{identifier-1} TIMES
{literal-1 } -----

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

<THRU }

UNTIL condition-1

PERFORM procedure-name-1 [{THROUGH} procedure~name-2]

<THRU }

VARYING {identifier-2} FROM {identifier-3}
------- {index-name-1} {index-name-2}

{Jiteral-1 }

BY {identifier-4} UNTIL condition-1
(literal-3 } -----

[AFTER {identifier-5} FROM {identifier-6}
----- {index-name-3} <index-name-4}

{literal-3 }

BY {identifier-7} UNTIL condition-2
{literal-4 } -----

[AFTER {identif!ier-8} FROM {identifier-9}
----- {index-name-5} {index - name-6}

{literal-5 }

BY {identifier-10} UNTIL condition-3 J l
-- {literal-6 } -----

PAGE 284

READ file-name RECORD CINTO identifier]

[; AT END imperative-statement]

READ file-name CNEXTJ RECORD CWITH NO LOCKJ CINTO identifier]

CJ AT END imperative-statement)

READ file-name RECORD CWITH NO LOCKJ CINTO identifier)

[; KEV IS data-nameJ

[; INVALID KEY imperative-statement)

REWRITE record-name CFROM identifier]

[; INVALID KEY imperative-statementJ

SET <identifier-1 C, identifier-2l ... } TO {identifier-8}
{index-name-1 C, index-name-2J ... } {index-name-3}

{integer-1 }

SET index-name-4 C, index-name-SJ ... <UP BY > (identifier-4}
<integer-2 }

<DOWN BY}

PAGE 285

START file-name CKEY <IS EQUAL TO } data-name]

<IS = >
{JS GREATER THAN>

<IS>)
{IS NOT LESS THAN}

{IS NOT< }

[; INVALID KEY imperative-statement)

STOP <RUN }

{literal }

SUBTRACT {identifier-1} C, identifier-2J ... FROM identifier-m
-------- {literal-1 } t, literal-2 J

CROUNDEDJ (; ON SIZE ERROR imperative-statement)

SUBTRACT {identifier-!} t, identifier-2]
-------- {literal-1 > C, literal-2 J

GIVING identifier-n CROUNDEDJ

[; ON SIZE ERROR imperative-statement]

FROM {identifier-m}
{literal-m >

SUBTRACT {CORRESPONDING} identifier-1 FROM identifier-2 CROUNDFDJ

{CORR }

[; ON SIZE ERROR imperative-statement]

UNLOCK file-name-1 RECORD

PAGE 286

USE AFTER STANDARD <EXCEPTION}

<ERROR >

PROCEDURE ON {file-name-1 C, file-name-2J ... >

<INPUT

<OUTPUT

<I-0

<EXTEND

WRITE record-name [FROM identifier-1l

<BEFORE} ADVANCING ((identifier-2} (LINE>>
------ <<integer > <LINES>>

<AFTER} < PAGE >

WRITE record-name CFROM identifier]

c, INVALID KEV imperative-statement]

PAGE 287

)

)

)

)

QENERAL FORMAT FOR CONDITIONS

:J
RELATION CONDITION:

(identifier-1 > <IS CNOTJ GREATER THAN} {identifieT'-2 >
(literal-1 > ------- -CliteT'al-2 }

(index-name-1 > <IS CNOTJ LESS THAN > <index-name-2 >
<IS CNOTJ EGUAL TO > -----
<IS CNOTJ >)

<IS CNOT] <)

<IS [NOTJ •)

CLASS CONDITION:

identifieT' IS CNOTJ <NUMERIC }

<ALPHABETIC>

CONDITION-NAME CONDITION:

condition-name

SWITCH-STATUS CONDITION:

condition-name

NEQATED SIMPLE CONDITION:

NOT simple-condition

PAGE 288

COMBINED CONDITION:

condition {{AND} condition> ...

{OR}

PAGE 289

MISCELLANEOUS FORMATS

GUALIFICATION:

{data-name-1 } [{OF} data-name-2] ...
{condition-name}

<I~U

paragraph-name [{OF} section-namel

{IN}

SUBSCRIPTING:

{data-name > (subscript-1 C, subscript-2 C, subscript-3J J)
<condition-name}

INDEXING:

{data-name } ({index-name-1 [{+} literal-2J}
<condition-name} {literal-1 <-> >

C, {index-name-2[{+} literal-4]}
{literal-3 <-> }

C, {index-name-3 ({+} literal-6J }] J)
{literal-5 <-> }

PAGE 290

IDENTIFIER:

FORMAT 1

data-name-1 t<OF} data-name-2J ...

{IN}

[(subscript-1 C, subscript-2 C, subscript-3J J) J

FORMAT 2

data-name-1 C{OF} data-name-2J . . . C < {index-name-1 ({+} 1 iteral-2J
{literal-! {-}

{IN}

C, {index-name-2 ({+} literal-4J}
<literal-3 <-> }

C, {index-name-3 C{+} literal-bl} JJ)J
{literal-5 <-> >

PAGE 291

GENERAL FORMAT FOR COPY STATEMENT

COPY ~ext-name

PAGE 292

Function Module

Nucleus
Table Handling
Seq_uential I/0
Relative I/0
Indexed I/0
Sort-Merge
Report Writer
Segmentation
Library

COBOL LEVEL OF IMPLEMENTATION

Implementation

Level 2.
Level 1+.
Level 2.
Level 2.
Level 2.
Null.
Null.
Level 1.
Level 1.

Debug

Inter-program Communication
Communication

N/S. Conditional compile and
execution time interactive debugger.
Level 1.
Modified ACCEPT and DISPLAY for
terminal communication.

ANSI COBOL X3.23 1974

MODULE

HIGH

FEDERAL INFORMATION
PROCESSING STANDARD <FIPS)

HIGH
INTERMEDIATE

LOW
INTERMEDIATE

NUCLEUS 2 2 1
TABLE HANDLING 2 2 1
SEGUENTIAL I/0 2 2 1
RELATIVE I /0 2 2 1
INDEXED l/0 2
SORT-MERGE ·2 1
REPORT WRITER
SEGMENTATION 2 1 1
LIBRARY 2 1 1
DEBUG 2 2 1
INTER-PROGRAM

COMMUNICATION 2 2 1
COMMUNICATION 2 2

N/S = Nonstandard

PAGE 293

RM
LOW COBOL

1 2
1 1+
1 2

2
2

1
1

N/S

1+
N/S

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus (2 NUC) :

- Data description includes a USAGE type of COMPUTATIONAL-1 or
COMP-1 for describing single word two's complement signed
binary data (nonstandard).

- Data description includes a USAGE type of COMPUTATIONAL-3 or
COMP-3 for describing packed decimal data (nonstandard).

- The ACCEPT statement allows multiple operands (nonstandard).

- The ACCEPT statement includes syntax for specifying CRT
control information <nonstandard).

- The DISPLAY statement includes syntax for specifying CRT
control information (nonstandard).

Level 1 Table Handling (1 TBL>:

- Variable group size <OCCURS DEPENDING).

Level 2 Sequential I-0 (2 SEG):

- The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

- The READ statement includes the WITH NO LOCK option
< nonstandard>.

The UNLOCK statement is included (nonstandard).

Level 2 Relative I-0 (2 REL>:

- The file control SELECT clause allows specification of the
external rile name as~ literal or data item (nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard).

The UNLOCK statement is included. (nonstandard).

PAGE 294

Laval 2 Indexed I-0 (2 INX>:

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

The READ statement includes the WITH NO LOCK option
(nonstandard).

The UNLOCK statement is included (nonstandard).

Level 1 Debug (1 DEB):

An interactive execution time debug facilit~ is provided
(nonstandard).

Level 1 Inter-Program Communication <1 IPC>:

The CALL statement
<nonstandard>.

allows literals in USING phrase

The CALL statement allows identifiers in the USING phrase to
be described with level number 01 through 49 and level
number 77 (nonstandard).

The CALL statement supports specification of a variable
program name as identifier-1 (level 2 IPC>.

Level 1 Communication (1 COM>:

ACCEPT and DISPLAY allow specification of complete screen
format in the Procedure Division (nonstandard).

PAGE 295

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus <2 NUC):

DATE-COMPILED
Di vi son.

is not supported in the Identific~tion

In data description the SIGN clause cannot specify LEADING
for the operational sign; omission of the SEPARATE phrase
has no effect; all operational signs ~re separate trailing
characters.

Alphabet-name IS literal or implementor-name may not be
specified in SPECIAL-NAMES paragraph.

Multiple results are not supported in arithmetic statements.

REMAINDER is not supported in DIVIDE statement.

A procedure-name is re~uired in GO TO statements.

INSPECT data items are restricted to single character.

Compound TALLYING and REPLACING clauses in the INSPECT
statement are not supported.

When used in the Procedure Division, the numeric literal in
the ALL form of a fiourative constant may not contain more
than one character.

Arithmetic
statements.

expressions may be used only in COMPUTE

Exponentiation to a noninteger power is not supported.

Sign conditions are not supported.

Abbreviated combined relation conditions are not supported.

- The STRING and UNSTRING statements a~e not supported.

Level 2 Se~uential I-0 (2 SEQ):

OPTIONAL and RESERVE may not be specified in the SELECT
clause.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

PAGE 296

- CODE-SET and LINAGE clauses may not be specified in a file
description entry.

The mnemonic-name and EOP options of the WRITE statement are
not suppoT'tP.d.

The REVERSED option or the OPEN statement is not supported.

- The FOR REMOVAL option of the CLOSE statement is not
supported.

Level 2 Relative r-o (2 REL>:

The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTROL.

The VALUE OF clause in an FD entry must not specify a data
name.

Level 2 Indexed I-0 (2 INX>:

The RESERVE clause of the SELECT entry is not suppol'ted.

RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0-CONTHOL.

Level 1 Segmentation <: SEG):

- All independent segments must physically follow the fixed
permanent segments in the source program.

Level 1 Library (1 LIB>:

A copy sentence must be the last entry in area B of a source
record.

Level 1 Inter-Program·communication (1 IPC>:

- A CALLed program is automatically cancelled upon execution
of the EXIT PROGRAM statement.

PAGE 297

*

* *
* ALL USERS MODELS I/III *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

===
Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES ·ro READ
NUMBER
------- --
26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7

MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

26-1149 MODEL I version page 1, 3, 4, 5, 6, and 8
MODEL III version page 2, 8

------- --

8759170

*

* *
* MODEL I USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

UPGRADE UTILITY ON TRSDOS 2.3B
---------------------==
The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

UPGRADE:

TRSDOS 2.1, 2.2, and 2.3.
TRSDOS 2.3B.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.
A program contained on the TRSDOS 2.3B
diskette.

1 of 8

*
* k

* MODEL III USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

XFERSYS UTILITY ON TRSDOS 1.3
===
The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.
===

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
g1v1ng a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

XFERSYS:

TRSDOS 1.1 and 1.2.
TRSDOS 1.3.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is

- used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen·
will clear and "Not a SYSTEM Disk" will be
displayed.
A program contained on the TRSDOS 1.3
diskette.

2 of 8

TO: owners of the Communications Package, Series I Editor
Assembler, BASIC Compiler, BASIC Runtime, COBOL
Compiler, and COBOL Runtime.

FROM: Radio Shack Computer Merchandising

DATE: August 18, 1981

RE: TRSDOS 2.38 for the MODEL I

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. variable length records have been corrected, in all
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.

4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH 'filespec' {ADD=aaaa,FIND=bb,CHG=cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find
and change. You can specify the contents of
more than one byte.

'cc' - the new contents to replace 'bb'

For example:
PATCH DUMMY/CMD {ADD=4567,FIND=CD3300,CHG=CD3B00)

changes CD3300, which resides at memory location 4567
(HEX) in the file namea DUMMY/CMD, to CD3B00.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at
a time. For example:

PATCH DUMMY/CMD {ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

TAPE {S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the

3 of 8

'source device' and 'destination device' using these
abbreviations:

T - Tape
D - Disk
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

5. These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:
COPY FILEl:0 to FILE3:0

duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE!
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.

PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS
Filename
JOBFILE/BLD
TERMINAL/Vl
LOADX/CMD
*** 171 Free

Attrb
N*X0
N*X0
N*X0

Granules

Drive: 0
LRL #Rec
256 1
256 5
256 5

04/15/81
#Grn #Ext

1 1
2 1
2 1

EOF
1

126
0

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

4 of 8

a. the first character is either I (Invisible file)
or N (Non-invisable file)

b. the second character is S (System file) or*
(User file)

c. the third character is the password protection
status of the file:

X - the file is unprotected (no password)
A - the file has an access word but no

update word
U - the file has an update word but no

access word
B - the file has both update and access

word
d. the fourth character specifies the level of

access assigned to the access word:
0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

5 of 8

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
ut{lity then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
1rRSDOS 2. 38 DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

·rhis means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.38 format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.38 error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
File (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE
TRSDOS 2. 1, 2. 2, 2. 3

FILEl EOF=9 10 RECORDS
FILE2 EOF=0 10 RECORDS

AFTER UPGRADE
TRSDOS 2.38

9 RECORDS
10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYSl/SYS
SYS3/SYS SYS4/SYS
SYS6/SYS FORMAT/CMD
BASICR/CMD BASIC/CMD

6 of 8

SYS2/SYS
SYS5/SYS
BACKUP/CMD

, SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

==-----
The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

===
TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B

ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC interpreter,
follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive O and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIF'r/CMD: 0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive O and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X'7D00')

Reference Section 4 of your manual and note that X'7000'
is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

7 of 8

* * * * * * * * * * * * * * *
* *
* IMPORTANT NOTICE *
* FOR *
* COMMUNICATIONS PACKAGE *
* DISK SYSTEM USERS *
* *
* * * * * * * * * * * * * * *

The 26-1149 Communications Package is delivered on MODEL I
TRSDOS 2.3B and Model III TRSDOS 1.3. Communication can
occur MODEL I to I, III to III, or I to III, but only under
MODEL I TRSDOS 2.3B and MODEL III TRSDOS 1.3.

Data on MODEL I TRSDOS 2.1, 2.2, or 2.3 must be UPGRADEd to
2.3B beofre it can be transmitted. Backup the diskette
before UPGRADEING.

Data on MODEL III TRSDOS 1.1 and 1.2 must be XFERSYSed to
1.3 before it can be transmitted. Backup the diskette
before XFERSYSing.

NOTE: Radio Shack Application programs on TRSDOS 1.1, 1.2,
2.1, 2.2, or 2.3 were tested on the particular
version of TRSDOS they were purchased on.

No guarantee is implied that these programs will
work correctly after being UPDATEd to MODEL I TRSDOS
2.3B or XFERSYSed to MODEL III TRSDOS 1.3.

IMPORTANT NOTE FOR MODEL I USERS: You cannot run BASIC
programs because TRSDOS 2.3 does not contain DISK BASIC.

On page 20 of the Communications Package manual, we suggest
you use SAVE, a DISK BASIC command, to save a transferred
BASIC tape program on diskette. You will not be able to use
the SAVE command with the TRSDOS 2.3B diskette, since it
does not contain DISK BASIC.

8 of 8

Addendum to the
Communications Package Manual

Catalog Number 26-1149

Please make these corrections to your Communications Package
manual:

1. Page 16: Change <SHIFT> <X> to <SHIFT> <down
arrow> <X>. In the next sentence, change <SHIFT>
<down arrow> to <SHIFT> <up arrow>.

2. Page 32: Memory location 16889 should be set to
108 rather than 104.

3. Page 35: Please note that the control function
does not work on some of the early Model III's. You
will have to press RESET to exit the TERM program
and ·return to BASIC or TRSDOS.

If you have a Model III, please note the following regarding
how to transfer tape data files (described in the manual on
pages 22 and 23):

COMPROG will prompt you and your friend with Cass?
before each block (portion) of data is transferred.
Both of you must specify the baud rate in response
to each of these prompts.

BASIC data files may only be transmitted at a low
baud rate. Therefore, when transmitting a BASIC
data file, you must respond to all the Cass? prompts
with L. If you will be writing a program to read
the file, you must specify the low baud rate before
running the program.

We suggest that you use only a tape which contains
a single data file. (If you have more than one
data file on a tape, you will have to manually stop
the tape recorder after the file is transmitted.
Otherwise, COMPROG will continue transferring all
the data on the tape.>

Note for Tape System Customers:

If you exit one of the communications programs, you can
return to it with the SYSTEM command (providing the program
in memory has not been over-written). Type SYSTEM <ENTER>.
In response to the*? prompt, type/ followed by the
program's transfer address .

For the HOST and TERM pr ograms, the transfer address is the
Memory Size address (listed on page 8) plus one. For the
COMPROG program, the transfer address is 46357 on a 32K
system, or 62741 on a 48K system.

Thank You!
Radio Shack

A Division of Tandy Corporation
875-9141

	doc_20100406074833.pdf
	doc_20100406075025.pdf
	doc_20100406075316.pdf
	doc_20100406075520.pdf
	doc_20100406075700.pdf

